72e469da0a
[CI SKIP]
367 lines
19 KiB
HTML
367 lines
19 KiB
HTML
<html>
|
|
<head>
|
|
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
|
|
<title>Numerical Differentiation</title>
|
|
<link rel="stylesheet" href="../math.css" type="text/css">
|
|
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
|
|
<link rel="home" href="../index.html" title="Math Toolkit 2.11.0">
|
|
<link rel="up" href="../quadrature.html" title="Chapter 13. Quadrature and Differentiation">
|
|
<link rel="prev" href="naive_monte_carlo.html" title="Naive Monte Carlo Integration">
|
|
<link rel="next" href="autodiff.html" title="Automatic Differentiation">
|
|
</head>
|
|
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
|
|
<table cellpadding="2" width="100%"><tr>
|
|
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
|
|
<td align="center"><a href="../../../../../index.html">Home</a></td>
|
|
<td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
|
|
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
|
|
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
|
|
<td align="center"><a href="../../../../../more/index.htm">More</a></td>
|
|
</tr></table>
|
|
<hr>
|
|
<div class="spirit-nav">
|
|
<a accesskey="p" href="naive_monte_carlo.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../quadrature.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="autodiff.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
|
|
</div>
|
|
<div class="section">
|
|
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
|
|
<a name="math_toolkit.diff"></a><a class="link" href="diff.html" title="Numerical Differentiation">Numerical Differentiation</a>
|
|
</h2></div></div></div>
|
|
<h4>
|
|
<a name="math_toolkit.diff.h0"></a>
|
|
<span class="phrase"><a name="math_toolkit.diff.synopsis"></a></span><a class="link" href="diff.html#math_toolkit.diff.synopsis">Synopsis</a>
|
|
</h4>
|
|
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">differentiaton</span><span class="special">/</span><span class="identifier">finite_difference</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
|
|
|
|
|
|
<span class="keyword">namespace</span> <span class="identifier">boost</span> <span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span> <span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">differentiation</span> <span class="special">{</span>
|
|
|
|
<span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">F</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">Real</span><span class="special">></span>
|
|
<span class="identifier">Real</span> <span class="identifier">complex_step_derivative</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">F</span> <span class="identifier">f</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">x</span><span class="special">);</span>
|
|
|
|
<span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">F</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">Real</span><span class="special">,</span> <span class="identifier">size_t</span> <span class="identifier">order</span> <span class="special">=</span> <span class="number">6</span><span class="special">></span>
|
|
<span class="identifier">Real</span> <span class="identifier">finite_difference_derivative</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">F</span> <span class="identifier">f</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">x</span><span class="special">,</span> <span class="identifier">Real</span><span class="special">*</span> <span class="identifier">error</span> <span class="special">=</span> <span class="keyword">nullptr</span><span class="special">);</span>
|
|
|
|
<span class="special">}}}</span> <span class="comment">// namespaces</span>
|
|
</pre>
|
|
<h4>
|
|
<a name="math_toolkit.diff.h1"></a>
|
|
<span class="phrase"><a name="math_toolkit.diff.description"></a></span><a class="link" href="diff.html#math_toolkit.diff.description">Description</a>
|
|
</h4>
|
|
<p>
|
|
The function <code class="computeroutput"><span class="identifier">finite_difference_derivative</span></code>
|
|
calculates a finite-difference approximation to the derivative of a function
|
|
<span class="emphasis"><em>f</em></span> at point <span class="emphasis"><em>x</em></span>. A basic usage is
|
|
</p>
|
|
<pre class="programlisting"><span class="keyword">auto</span> <span class="identifier">f</span> <span class="special">=</span> <span class="special">[](</span><span class="keyword">double</span> <span class="identifier">x</span><span class="special">)</span> <span class="special">{</span> <span class="keyword">return</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">exp</span><span class="special">(</span><span class="identifier">x</span><span class="special">);</span> <span class="special">};</span>
|
|
<span class="keyword">double</span> <span class="identifier">x</span> <span class="special">=</span> <span class="number">1.7</span><span class="special">;</span>
|
|
<span class="keyword">double</span> <span class="identifier">dfdx</span> <span class="special">=</span> <span class="identifier">finite_difference_derivative</span><span class="special">(</span><span class="identifier">f</span><span class="special">,</span> <span class="identifier">x</span><span class="special">);</span>
|
|
</pre>
|
|
<p>
|
|
Finite differencing is complicated, as differentiation is <span class="emphasis"><em>infinitely</em></span>
|
|
ill-conditioned. In addition, for any function implemented in finite-precision
|
|
arithmetic, the "true" derivative is <span class="emphasis"><em>zero</em></span> almost
|
|
everywhere, and undefined at representables. However, some tricks allow for
|
|
reasonable results to be obtained in many cases.
|
|
</p>
|
|
<p>
|
|
There are two sources of error from finite differences: One, the truncation
|
|
error arising from using a finite number of samples to cancel out higher order
|
|
terms in the Taylor series. The second is the roundoff error involved in evaluating
|
|
the function. The truncation error goes to zero as <span class="emphasis"><em>h</em></span> →
|
|
0, but the roundoff error becomes unbounded. By balancing these two sources
|
|
of error, we can choose a value of <span class="emphasis"><em>h</em></span> that minimizes the
|
|
maximum total error. For this reason boost's <code class="computeroutput"><span class="identifier">finite_difference_derivative</span></code>
|
|
does not require the user to input a stepsize. For more details about the theoretical
|
|
error analysis involved in finite-difference approximations to the derivative,
|
|
see <a href="http://web.archive.org/web/20150420195907/http://www.uio.no/studier/emner/matnat/math/MAT-INF1100/h08/kompendiet/diffint.pdf" target="_top">here</a>.
|
|
</p>
|
|
<p>
|
|
Despite the effort that has went into choosing a reasonable value of <span class="emphasis"><em>h</em></span>,
|
|
the problem is still fundamentally ill-conditioned, and hence an error estimate
|
|
is essential. It can be queried as follows
|
|
</p>
|
|
<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">error_estimate</span><span class="special">;</span>
|
|
<span class="keyword">double</span> <span class="identifier">d</span> <span class="special">=</span> <span class="identifier">finite_difference_derivative</span><span class="special">(</span><span class="identifier">f</span><span class="special">,</span> <span class="identifier">x</span><span class="special">,</span> <span class="special">&</span><span class="identifier">error_estimate</span><span class="special">);</span>
|
|
</pre>
|
|
<p>
|
|
N.B.: Producing an error estimate requires additional function evaluations
|
|
and as such is slower than simple evaluation of the derivative. It also expands
|
|
the domain over which the function must be differentiable and requires the
|
|
function to have two more continuous derivatives. The error estimate is computed
|
|
under the assumption that <span class="emphasis"><em>f</em></span> is evaluated to 1ULP. This
|
|
might seem an extreme assumption, but it is the only sensible one, as the routine
|
|
cannot know the functions rounding error. If the function cannot be evaluated
|
|
with very great accuracy, Lanczos's smoothing differentiation is recommended
|
|
as an alternative.
|
|
</p>
|
|
<p>
|
|
The default order of accuracy is 6, which reflects that fact that people tend
|
|
to be interested in functions with many continuous derivatives. If your function
|
|
does not have 7 continuous derivatives, is may be of interest to use a lower
|
|
order method, which can be achieved via (say)
|
|
</p>
|
|
<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">d</span> <span class="special">=</span> <span class="identifier">finite_difference_derivative</span><span class="special"><</span><span class="keyword">decltype</span><span class="special">(</span><span class="identifier">f</span><span class="special">),</span> <span class="identifier">Real</span><span class="special">,</span> <span class="number">2</span><span class="special">>(</span><span class="identifier">f</span><span class="special">,</span> <span class="identifier">x</span><span class="special">);</span>
|
|
</pre>
|
|
<p>
|
|
This requests a second-order accurate derivative be computed.
|
|
</p>
|
|
<p>
|
|
It is emphatically <span class="emphasis"><em>not</em></span> the case that higher order methods
|
|
always give higher accuracy for smooth functions. Higher order methods require
|
|
more addition of positive and negative terms, which can lead to catastrophic
|
|
cancellation. A function which is very good at making a mockery of finite-difference
|
|
differentiation is exp(x)/(cos(x)<sup>3</sup> + sin(x)<sup>3</sup>). Differentiating this function
|
|
by <code class="computeroutput"><span class="identifier">finite_difference_derivative</span></code>
|
|
in double precision at <span class="emphasis"><em>x=5.5</em></span> gives zero correct digits
|
|
at order 4, 6, and 8, but recovers 5 correct digits at order 2. These are dangerous
|
|
waters; use the error estimates to tread carefully.
|
|
</p>
|
|
<p>
|
|
For a finite-difference method of order <span class="emphasis"><em>k</em></span>, the error is
|
|
<span class="emphasis"><em>C</em></span> ε<sup>k/k+1</sup>. In the limit <span class="emphasis"><em>k</em></span> →
|
|
∞, we see that the error tends to ε, recovering the full precision
|
|
for the type. However, this ignores the fact that higher-order methods require
|
|
subtracting more nearly-equal (perhaps noisy) terms, so the constant <span class="emphasis"><em>C</em></span>
|
|
grows with <span class="emphasis"><em>k</em></span>. Since <span class="emphasis"><em>C</em></span> grows quickly
|
|
and ε<sup>k/k+1</sup> approaches ε slowly, we can see there is a compromise
|
|
between high-order accuracy and conditioning of the difference quotient. In
|
|
practice we have found that <span class="emphasis"><em>k=6</em></span> seems to be a good compromise
|
|
between the two (and have made this the default), but users are encouraged
|
|
to examine the error estimates to choose an optimal order of accuracy for the
|
|
given problem.
|
|
</p>
|
|
<div class="table">
|
|
<a name="math_toolkit.diff.id"></a><p class="title"><b>Table 13.1. Cost of Finite-Difference Numerical Differentiation</b></p>
|
|
<div class="table-contents"><table class="table" summary="Cost of Finite-Difference Numerical Differentiation">
|
|
<colgroup>
|
|
<col>
|
|
<col>
|
|
<col>
|
|
<col>
|
|
<col>
|
|
</colgroup>
|
|
<thead><tr>
|
|
<th>
|
|
<p>
|
|
Order of Accuracy
|
|
</p>
|
|
</th>
|
|
<th>
|
|
<p>
|
|
Function Evaluations
|
|
</p>
|
|
</th>
|
|
<th>
|
|
<p>
|
|
Error
|
|
</p>
|
|
</th>
|
|
<th>
|
|
<p>
|
|
Continuous Derivatives Required for Error Estimate to Hold
|
|
</p>
|
|
</th>
|
|
<th>
|
|
<p>
|
|
Additional Function Evaluations to Produce Error Estimates
|
|
</p>
|
|
</th>
|
|
</tr></thead>
|
|
<tbody>
|
|
<tr>
|
|
<td>
|
|
<p>
|
|
1
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
2
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
ε<sup>1/2</sup>
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
2
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
1
|
|
</p>
|
|
</td>
|
|
</tr>
|
|
<tr>
|
|
<td>
|
|
<p>
|
|
2
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
2
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
ε<sup>2/3</sup>
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
3
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
2
|
|
</p>
|
|
</td>
|
|
</tr>
|
|
<tr>
|
|
<td>
|
|
<p>
|
|
4
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
4
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
ε<sup>4/5</sup>
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
5
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
2
|
|
</p>
|
|
</td>
|
|
</tr>
|
|
<tr>
|
|
<td>
|
|
<p>
|
|
6
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
6
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
ε<sup>6/7</sup>
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
7
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
2
|
|
</p>
|
|
</td>
|
|
</tr>
|
|
<tr>
|
|
<td>
|
|
<p>
|
|
8
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
8
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
ε<sup>8/9</sup>
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
9
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
2
|
|
</p>
|
|
</td>
|
|
</tr>
|
|
</tbody>
|
|
</table></div>
|
|
</div>
|
|
<br class="table-break"><p>
|
|
Given all the caveats which must be kept in mind for successful use of finite-difference
|
|
differentiation, it is reasonable to try to avoid it if possible. Boost provides
|
|
two possibilities: The Chebyshev transform (see <a class="link" href="sf_poly/chebyshev.html" title="Chebyshev Polynomials">here</a>)
|
|
and the complex step derivative. If your function is the restriction to the
|
|
real line of a holomorphic function which takes real values at real argument,
|
|
then the <span class="bold"><strong>complex step derivative</strong></span> can be used.
|
|
The idea is very simple: Since <span class="emphasis"><em>f</em></span> is complex-differentiable,
|
|
<span class="emphasis"><em>f(x+ⅈ h) = f(x) + ⅈ hf'(x) - h<sup>2</sup>f''(x) + 𝑶(h<sup>3</sup>)</em></span>.
|
|
As long as <span class="emphasis"><em>f(x)</em></span> ∈ ℝ, then <span class="emphasis"><em>f'(x)
|
|
= ℑ f(x+ⅈ h)/h + 𝑶(h<sup>2</sup>)</em></span>. This method requires a single
|
|
complex function evaluation and is not subject to the catastrophic subtractive
|
|
cancellation that plagues finite-difference calculations.
|
|
</p>
|
|
<p>
|
|
An example usage:
|
|
</p>
|
|
<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">x</span> <span class="special">=</span> <span class="number">7.2</span><span class="special">;</span>
|
|
<span class="keyword">double</span> <span class="identifier">e_prime</span> <span class="special">=</span> <span class="identifier">complex_step_derivative</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">exp</span><span class="special"><</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special"><</span><span class="keyword">double</span><span class="special">>>,</span> <span class="identifier">x</span><span class="special">);</span>
|
|
</pre>
|
|
<p>
|
|
References:
|
|
</p>
|
|
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
|
|
<li class="listitem">
|
|
Squire, William, and George Trapp. <span class="emphasis"><em>Using complex variables to
|
|
estimate derivatives of real functions.</em></span> Siam Review 40.1 (1998):
|
|
110-112.
|
|
</li>
|
|
<li class="listitem">
|
|
Fornberg, Bengt. <span class="emphasis"><em>Generation of finite difference formulas on
|
|
arbitrarily spaced grids.</em></span> Mathematics of computation 51.184
|
|
(1988): 699-706.
|
|
</li>
|
|
<li class="listitem">
|
|
Corless, Robert M., and Nicolas Fillion. <span class="emphasis"><em>A graduate introduction
|
|
to numerical methods.</em></span> AMC 10 (2013): 12.
|
|
</li>
|
|
</ul></div>
|
|
</div>
|
|
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
|
|
<td align="left"></td>
|
|
<td align="right"><div class="copyright-footer">Copyright © 2006-2019 Nikhar
|
|
Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
|
|
Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
|
|
Råde, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
|
|
Daryle Walker and Xiaogang Zhang<p>
|
|
Distributed under the Boost Software License, Version 1.0. (See accompanying
|
|
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
|
|
</p>
|
|
</div></td>
|
|
</tr></table>
|
|
<hr>
|
|
<div class="spirit-nav">
|
|
<a accesskey="p" href="naive_monte_carlo.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../quadrature.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="autodiff.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
|
|
</div>
|
|
</body>
|
|
</html>
|