72e469da0a
[CI SKIP]
251 lines
24 KiB
HTML
251 lines
24 KiB
HTML
<html>
|
|
<head>
|
|
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
|
|
<title>Lanczos Smoothing Derivatives</title>
|
|
<link rel="stylesheet" href="../math.css" type="text/css">
|
|
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
|
|
<link rel="home" href="../index.html" title="Math Toolkit 2.11.0">
|
|
<link rel="up" href="../quadrature.html" title="Chapter 13. Quadrature and Differentiation">
|
|
<link rel="prev" href="autodiff.html" title="Automatic Differentiation">
|
|
<link rel="next" href="../inverse_complex.html" title="Chapter 14. Complex Number Functions">
|
|
</head>
|
|
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
|
|
<table cellpadding="2" width="100%"><tr>
|
|
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
|
|
<td align="center"><a href="../../../../../index.html">Home</a></td>
|
|
<td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
|
|
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
|
|
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
|
|
<td align="center"><a href="../../../../../more/index.htm">More</a></td>
|
|
</tr></table>
|
|
<hr>
|
|
<div class="spirit-nav">
|
|
<a accesskey="p" href="autodiff.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../quadrature.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../inverse_complex.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
|
|
</div>
|
|
<div class="section">
|
|
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
|
|
<a name="math_toolkit.diff0"></a><a class="link" href="diff0.html" title="Lanczos Smoothing Derivatives">Lanczos Smoothing Derivatives</a>
|
|
</h2></div></div></div>
|
|
<h4>
|
|
<a name="math_toolkit.diff0.h0"></a>
|
|
<span class="phrase"><a name="math_toolkit.diff0.synopsis"></a></span><a class="link" href="diff0.html#math_toolkit.diff0.synopsis">Synopsis</a>
|
|
</h4>
|
|
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">differentiation</span><span class="special">/</span><span class="identifier">lanczos_smoothing</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
|
|
|
|
<span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">differentiation</span> <span class="special">{</span>
|
|
|
|
<span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">Real</span><span class="special">,</span> <span class="identifier">size_t</span> <span class="identifier">order</span><span class="special">=</span><span class="number">1</span><span class="special">></span>
|
|
<span class="keyword">class</span> <span class="identifier">discrete_lanczos_derivative</span> <span class="special">{</span>
|
|
<span class="keyword">public</span><span class="special">:</span>
|
|
<span class="identifier">discrete_lanczos_derivative</span><span class="special">(</span><span class="identifier">Real</span> <span class="identifier">spacing</span><span class="special">,</span>
|
|
<span class="identifier">size_t</span> <span class="identifier">n</span> <span class="special">=</span> <span class="number">18</span><span class="special">,</span>
|
|
<span class="identifier">size_t</span> <span class="identifier">approximation_order</span> <span class="special">=</span> <span class="number">3</span><span class="special">);</span>
|
|
|
|
<span class="keyword">template</span><span class="special"><</span><span class="keyword">class</span> <span class="identifier">RandomAccessContainer</span><span class="special">></span>
|
|
<span class="identifier">Real</span> <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">RandomAccessContainer</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">v</span><span class="special">,</span> <span class="identifier">size_t</span> <span class="identifier">i</span><span class="special">)</span> <span class="keyword">const</span><span class="special">;</span>
|
|
|
|
<span class="keyword">template</span><span class="special"><</span><span class="keyword">class</span> <span class="identifier">RandomAccessContainer</span><span class="special">></span>
|
|
<span class="keyword">void</span> <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">RandomAccessContainer</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">v</span><span class="special">,</span> <span class="identifier">RandomAccessContainer</span> <span class="special">&</span> <span class="identifier">dvdt</span><span class="special">)</span> <span class="keyword">const</span><span class="special">;</span>
|
|
|
|
<span class="keyword">template</span><span class="special"><</span><span class="keyword">class</span> <span class="identifier">RandomAccessContainer</span><span class="special">></span>
|
|
<span class="identifier">RandomAccessContainer</span> <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">RandomAccessContainer</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">v</span><span class="special">)</span> <span class="keyword">const</span><span class="special">;</span>
|
|
|
|
<span class="identifier">Real</span> <span class="identifier">get_spacing</span><span class="special">()</span> <span class="keyword">const</span><span class="special">;</span>
|
|
<span class="special">};</span>
|
|
|
|
<span class="special">}</span> <span class="comment">// namespaces</span>
|
|
</pre>
|
|
<h4>
|
|
<a name="math_toolkit.diff0.h1"></a>
|
|
<span class="phrase"><a name="math_toolkit.diff0.description"></a></span><a class="link" href="diff0.html#math_toolkit.diff0.description">Description</a>
|
|
</h4>
|
|
<p>
|
|
The <code class="computeroutput"><span class="identifier">discrete_lanczos_derivative</span></code>
|
|
class calculates a finite-difference approximation to the derivative of a noisy
|
|
sequence of equally-spaced values <span class="emphasis"><em>v</em></span>. A basic usage is
|
|
</p>
|
|
<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="keyword">double</span><span class="special">></span> <span class="identifier">v</span><span class="special">(</span><span class="number">500</span><span class="special">);</span>
|
|
<span class="comment">// fill v with noisy data.</span>
|
|
<span class="keyword">double</span> <span class="identifier">spacing</span> <span class="special">=</span> <span class="number">0.001</span><span class="special">;</span>
|
|
<span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">differentiation</span><span class="special">::</span><span class="identifier">discrete_lanczos_derivative</span><span class="special">;</span>
|
|
<span class="keyword">auto</span> <span class="identifier">lanczos</span> <span class="special">=</span> <span class="identifier">discrete_lanczos_derivative</span><span class="special">(</span><span class="identifier">spacing</span><span class="special">);</span>
|
|
<span class="comment">// Compute dvdt at index 30:</span>
|
|
<span class="keyword">double</span> <span class="identifier">dvdt30</span> <span class="special">=</span> <span class="identifier">lanczos</span><span class="special">(</span><span class="identifier">v</span><span class="special">,</span> <span class="number">30</span><span class="special">);</span>
|
|
<span class="comment">// Compute derivative of entire vector:</span>
|
|
<span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="keyword">double</span><span class="special">></span> <span class="identifier">dvdt</span> <span class="special">=</span> <span class="identifier">lanczos</span><span class="special">(</span><span class="identifier">v</span><span class="special">);</span>
|
|
</pre>
|
|
<p>
|
|
Noise-suppressing second derivatives can also be computed. The syntax is as
|
|
follows:
|
|
</p>
|
|
<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="keyword">double</span><span class="special">></span> <span class="identifier">v</span><span class="special">(</span><span class="number">500</span><span class="special">);</span>
|
|
<span class="comment">// fill v with noisy data.</span>
|
|
<span class="keyword">auto</span> <span class="identifier">lanczos</span> <span class="special">=</span> <span class="identifier">lanczos_derivative</span><span class="special"><</span><span class="keyword">double</span><span class="special">,</span> <span class="number">2</span><span class="special">>(</span><span class="identifier">spacing</span><span class="special">);</span>
|
|
<span class="comment">// evaluate second derivative at a point:</span>
|
|
<span class="keyword">double</span> <span class="identifier">d2vdt2</span> <span class="special">=</span> <span class="identifier">lanczos</span><span class="special">(</span><span class="identifier">v</span><span class="special">,</span> <span class="number">18</span><span class="special">);</span>
|
|
<span class="comment">// evaluate second derivative of entire vector:</span>
|
|
<span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="keyword">double</span><span class="special">></span> <span class="identifier">d2vdt2</span> <span class="special">=</span> <span class="identifier">lanczos</span><span class="special">(</span><span class="identifier">v</span><span class="special">);</span>
|
|
</pre>
|
|
<p>
|
|
For memory conscious programmers, you can reuse the memory space for the derivative
|
|
as follows:
|
|
</p>
|
|
<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="keyword">double</span><span class="special">></span> <span class="identifier">v</span><span class="special">(</span><span class="number">500</span><span class="special">);</span>
|
|
<span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="keyword">double</span><span class="special">></span> <span class="identifier">dvdt</span><span class="special">(</span><span class="number">500</span><span class="special">);</span>
|
|
<span class="comment">// . . . define spacing, create and instance of discrete_lanczos_derivative</span>
|
|
|
|
<span class="comment">// populate dvdt, perhaps in a loop:</span>
|
|
<span class="identifier">lanczos</span><span class="special">(</span><span class="identifier">v</span><span class="special">,</span> <span class="identifier">dvdt</span><span class="special">);</span>
|
|
</pre>
|
|
<p>
|
|
If the data has variance σ<sup>2</sup>, then the variance of the computed derivative
|
|
is roughly σ<sup>2</sup><span class="emphasis"><em>p</em></span><sup>3</sup> <span class="emphasis"><em>n</em></span><sup>-3</sup> Δ
|
|
<span class="emphasis"><em>t</em></span><sup>-2</sup>, i.e., it increases cubically with the approximation
|
|
order <span class="emphasis"><em>p</em></span>, linearly with the data variance, and decreases
|
|
at the cube of the filter length <span class="emphasis"><em>n</em></span>. In addition, we must
|
|
not forget the discretization error which is <span class="emphasis"><em>O</em></span>(Δ
|
|
<span class="emphasis"><em>t</em></span><sup><span class="emphasis"><em>p</em></span></sup>). You can play around with the
|
|
approximation order <span class="emphasis"><em>p</em></span> and the filter length <span class="emphasis"><em>n</em></span>:
|
|
</p>
|
|
<pre class="programlisting"><span class="identifier">size_t</span> <span class="identifier">n</span> <span class="special">=</span> <span class="number">12</span><span class="special">;</span>
|
|
<span class="identifier">size_t</span> <span class="identifier">p</span> <span class="special">=</span> <span class="number">2</span><span class="special">;</span>
|
|
<span class="keyword">auto</span> <span class="identifier">lanczos</span> <span class="special">=</span> <span class="identifier">lanczos_derivative</span><span class="special">(</span><span class="identifier">spacing</span><span class="special">,</span> <span class="identifier">n</span><span class="special">,</span> <span class="identifier">p</span><span class="special">);</span>
|
|
<span class="keyword">double</span> <span class="identifier">dvdt</span> <span class="special">=</span> <span class="identifier">lanczos</span><span class="special">(</span><span class="identifier">v</span><span class="special">,</span> <span class="identifier">i</span><span class="special">);</span>
|
|
</pre>
|
|
<p>
|
|
If <span class="emphasis"><em>p=2n</em></span>, then the discrete Lanczos derivative is not smoothing:
|
|
It reduces to the standard <span class="emphasis"><em>2n+1</em></span>-point finite-difference
|
|
formula. For <span class="emphasis"><em>p>2n</em></span>, an assertion is hit as the filter
|
|
is undefined.
|
|
</p>
|
|
<p>
|
|
In our tests with AWGN, we have found the error decreases monotonically with
|
|
<span class="emphasis"><em>n</em></span>, as is expected from the theory discussed above. So
|
|
the choice of <span class="emphasis"><em>n</em></span> is simple: As high as possible given your
|
|
speed requirements (larger <span class="emphasis"><em>n</em></span> implies a longer filter and
|
|
hence more compute), balanced against the danger of overfitting and averaging
|
|
over non-stationarity.
|
|
</p>
|
|
<p>
|
|
The choice of approximation order <span class="emphasis"><em>p</em></span> for a given <span class="emphasis"><em>n</em></span>
|
|
is more difficult. If your signal is believed to be a polynomial, it does not
|
|
make sense to set <span class="emphasis"><em>p</em></span> to larger than the polynomial degree-
|
|
though it may be sensible to take <span class="emphasis"><em>p</em></span> less than this.
|
|
</p>
|
|
<p>
|
|
For a sinusoidal signal contaminated with AWGN, we ran a few tests showing
|
|
that for SNR = 1, p = n/8 gave the best results, for SNR = 10, p = n/7 was
|
|
the best, and for SNR = 100, p = n/6 was the most reasonable choice. For SNR
|
|
= 0.1, the method appears to be useless. The user is urged to use these results
|
|
with caution: they have no theoretical backing and are extrapolated from a
|
|
single case.
|
|
</p>
|
|
<p>
|
|
The filters are (regrettably) computed at runtime-the vast number of combinations
|
|
of approximation order and filter length makes the number of filters that must
|
|
be stored excessive for compile-time data. The constructor call computes the
|
|
filters. Since each filter has length <span class="emphasis"><em>2n+1</em></span> and there are
|
|
<span class="emphasis"><em>n</em></span> filters, whose element each consist of <span class="emphasis"><em>p</em></span>
|
|
summands, the complexity of the constructor call is O(<span class="emphasis"><em>n</em></span><sup>2</sup><span class="emphasis"><em>p</em></span>).
|
|
This is not cheap-though for most cases small <span class="emphasis"><em>p</em></span> and <span class="emphasis"><em>n</em></span>
|
|
not too large (< 20) is desired. However, for concreteness, on the author's
|
|
2.7GHz Intel laptop CPU, the <span class="emphasis"><em>n=16</em></span>, <span class="emphasis"><em>p=3</em></span>
|
|
filter takes 9 microseconds to compute. This is far from negligible, and as
|
|
such the filters may be used with multiple data, and even shared between threads:
|
|
</p>
|
|
<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="keyword">double</span><span class="special">></span> <span class="identifier">v1</span><span class="special">(</span><span class="number">500</span><span class="special">);</span>
|
|
<span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="keyword">double</span><span class="special">></span> <span class="identifier">v2</span><span class="special">(</span><span class="number">500</span><span class="special">);</span>
|
|
<span class="comment">// fill v1, v2 with noisy data.</span>
|
|
<span class="keyword">auto</span> <span class="identifier">lanczos</span> <span class="special">=</span> <span class="identifier">lanczos_derivative</span><span class="special">(</span><span class="identifier">spacing</span><span class="special">);</span>
|
|
<span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="keyword">double</span><span class="special">></span> <span class="identifier">dv1dt</span> <span class="special">=</span> <span class="identifier">lanczos</span><span class="special">(</span><span class="identifier">v1</span><span class="special">);</span> <span class="comment">// threadsafe</span>
|
|
<span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="keyword">double</span><span class="special">></span> <span class="identifier">dv2dt</span> <span class="special">=</span> <span class="identifier">lanczos</span><span class="special">(</span><span class="identifier">v2</span><span class="special">);</span> <span class="comment">// threadsafe</span>
|
|
<span class="comment">// need to use a different spacing?</span>
|
|
<span class="identifier">lanczos</span><span class="special">.</span><span class="identifier">reset_spacing</span><span class="special">(</span><span class="number">0.02</span><span class="special">);</span> <span class="comment">// not threadsafe</span>
|
|
</pre>
|
|
<p>
|
|
The implementation follows <a href="https://doi.org/10.1080/00207160.2012.666348" target="_top">McDevitt,
|
|
2012</a>, who vastly expanded the ideas of Lanczos to create a very general
|
|
framework for numerically differentiating noisy equispaced data.
|
|
</p>
|
|
<h4>
|
|
<a name="math_toolkit.diff0.h2"></a>
|
|
<span class="phrase"><a name="math_toolkit.diff0.example"></a></span><a class="link" href="diff0.html#math_toolkit.diff0.example">Example</a>
|
|
</h4>
|
|
<p>
|
|
We have extracted some data from the <a href="https://www.gw-openscience.org/data/" target="_top">LIGO
|
|
signal</a> and differentiated it using the (<span class="emphasis"><em>n</em></span>, <span class="emphasis"><em>p</em></span>)
|
|
= (60, 4) Lanczos smoothing derivative, as well as using the (<span class="emphasis"><em>n</em></span>,
|
|
<span class="emphasis"><em>p</em></span>) = (4, 8) (nonsmoothing) derivative.
|
|
</p>
|
|
<div class="blockquote"><blockquote class="blockquote"><p>
|
|
<span class="inlinemediaobject"><img src="../../graphs/ligo_derivative.svg" align="middle"></span>
|
|
|
|
</p></blockquote></div>
|
|
<p>
|
|
The original data is in orange, the smoothing derivative in blue, and the non-smoothing
|
|
standard finite difference formula is in gray. (Each time series has been rescaled
|
|
to fit in the same graph.) We can see that the smoothing derivative tracks
|
|
the increase and decrease in the trend well, whereas the standard finite difference
|
|
formula produces nonsense and amplifies noise.
|
|
</p>
|
|
<h4>
|
|
<a name="math_toolkit.diff0.h3"></a>
|
|
<span class="phrase"><a name="math_toolkit.diff0.caveats"></a></span><a class="link" href="diff0.html#math_toolkit.diff0.caveats">Caveats</a>
|
|
</h4>
|
|
<p>
|
|
The computation of the filters is ill-conditioned for large <span class="emphasis"><em>p</em></span>.
|
|
In order to mitigate this problem, we have computed the filters in higher precision
|
|
and cast the results to the desired type. However, this simply pushes the problem
|
|
to larger <span class="emphasis"><em>p</em></span>. In practice, this is not a problem, as large
|
|
<span class="emphasis"><em>p</em></span> corresponds to less powerful denoising, but keep it
|
|
in mind.
|
|
</p>
|
|
<p>
|
|
In addition, the <code class="computeroutput"><span class="special">-</span><span class="identifier">ffast</span><span class="special">-</span><span class="identifier">math</span></code> flag
|
|
has a very large effect on the speed of these functions. In our benchmarks,
|
|
they were 50% faster with the flag enabled, which is much larger than the usual
|
|
performance increases we see by turning on this flag. Hence, if the default
|
|
performance is not sufficient, this flag is available, though it comes with
|
|
its own problems.
|
|
</p>
|
|
<p>
|
|
This requires C++17 <code class="computeroutput"><span class="keyword">if</span> <span class="keyword">constexpr</span></code>.
|
|
</p>
|
|
<h4>
|
|
<a name="math_toolkit.diff0.h4"></a>
|
|
<span class="phrase"><a name="math_toolkit.diff0.references"></a></span><a class="link" href="diff0.html#math_toolkit.diff0.references">References</a>
|
|
</h4>
|
|
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
|
|
<li class="listitem">
|
|
Corless, Robert M., and Nicolas Fillion. <span class="emphasis"><em>A graduate introduction
|
|
to numerical methods.</em></span> AMC 10 (2013): 12.
|
|
</li>
|
|
<li class="listitem">
|
|
Lanczos, Cornelius. <span class="emphasis"><em>Applied analysis.</em></span> Courier Corporation,
|
|
1988.
|
|
</li>
|
|
<li class="listitem">
|
|
Timothy J. McDevitt (2012): <span class="emphasis"><em>Discrete Lanczos derivatives of noisy
|
|
data</em></span>, International Journal of Computer Mathematics, 89:7, 916-931
|
|
</li>
|
|
</ul></div>
|
|
</div>
|
|
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
|
|
<td align="left"></td>
|
|
<td align="right"><div class="copyright-footer">Copyright © 2006-2019 Nikhar
|
|
Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
|
|
Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
|
|
Råde, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
|
|
Daryle Walker and Xiaogang Zhang<p>
|
|
Distributed under the Boost Software License, Version 1.0. (See accompanying
|
|
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
|
|
</p>
|
|
</div></td>
|
|
</tr></table>
|
|
<hr>
|
|
<div class="spirit-nav">
|
|
<a accesskey="p" href="autodiff.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../quadrature.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../inverse_complex.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
|
|
</div>
|
|
</body>
|
|
</html>
|