math/doc/html/math_toolkit/double_exponential/de_caveats.html
2019-10-31 17:55:35 +00:00

190 lines
20 KiB
HTML

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>Caveats</title>
<link rel="stylesheet" href="../../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
<link rel="home" href="../../index.html" title="Math Toolkit 2.11.0">
<link rel="up" href="../double_exponential.html" title="Double-exponential quadrature">
<link rel="prev" href="de_thread.html" title="Thread Safety">
<link rel="next" href="de_refes.html" title="References">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td>
<td align="center"><a href="../../../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="de_thread.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../double_exponential.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="de_refes.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h3 class="title">
<a name="math_toolkit.double_exponential.de_caveats"></a><a class="link" href="de_caveats.html" title="Caveats">Caveats</a>
</h3></div></div></div>
<p>
A few things to keep in mind while using the tanh-sinh, exp-sinh, and sinh-sinh
quadratures:
</p>
<p>
These routines are <span class="bold"><strong>very</strong></span> aggressive about
approaching the endpoint singularities. This allows lots of significant digits
to be extracted, but also has another problem: Roundoff error can cause the
function to be evaluated at the endpoints. A few ways to avoid this: Narrow
up the bounds of integration to say, [a + &#949;, b - &#949;], make sure (a+b)/2 and
(b-a)/2 are representable, and finally, if you think the compromise between
accuracy an usability has gone too far in the direction of accuracy, file
a ticket.
</p>
<p>
Both exp-sinh and sinh-sinh quadratures evaluate the functions they are passed
at <span class="bold"><strong>very</strong></span> large argument. You might understand
that x<sup>12</sup>exp(-x) is should be zero when x<sup>12</sup> overflows, but IEEE floating point
arithmetic does not. Hence <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">pow</span><span class="special">(</span><span class="identifier">x</span><span class="special">,</span> <span class="number">12</span><span class="special">)*</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">exp</span><span class="special">(-</span><span class="identifier">x</span><span class="special">)</span></code> is an indeterminate form whenever <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">pow</span><span class="special">(</span><span class="identifier">x</span><span class="special">,</span>
<span class="number">12</span><span class="special">)</span></code>
overflows. So make sure your functions have the correct limiting behavior;
for example
</p>
<pre class="programlisting"><span class="keyword">auto</span> <span class="identifier">f</span> <span class="special">=</span> <span class="special">[](</span><span class="keyword">double</span> <span class="identifier">x</span><span class="special">)</span> <span class="special">{</span>
<span class="keyword">double</span> <span class="identifier">t</span> <span class="special">=</span> <span class="identifier">exp</span><span class="special">(-</span><span class="identifier">x</span><span class="special">);</span>
<span class="keyword">if</span><span class="special">(</span><span class="identifier">t</span> <span class="special">==</span> <span class="number">0</span><span class="special">)</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="number">0</span><span class="special">;</span>
<span class="special">}</span>
<span class="keyword">return</span> <span class="identifier">t</span><span class="special">*</span><span class="identifier">pow</span><span class="special">(</span><span class="identifier">x</span><span class="special">,</span> <span class="number">12</span><span class="special">);</span>
<span class="special">};</span>
</pre>
<p>
has the correct behavior for large <span class="emphasis"><em>x</em></span>, but <code class="computeroutput"><span class="keyword">auto</span> <span class="identifier">f</span> <span class="special">=</span> <span class="special">[](</span><span class="keyword">double</span>
<span class="identifier">x</span><span class="special">)</span> <span class="special">{</span> <span class="keyword">return</span> <span class="identifier">exp</span><span class="special">(-</span><span class="identifier">x</span><span class="special">)*</span><span class="identifier">pow</span><span class="special">(</span><span class="identifier">x</span><span class="special">,</span> <span class="number">12</span><span class="special">);</span> <span class="special">};</span></code> does
not.
</p>
<p>
Oscillatory integrals, such as the sinc integral, are poorly approximated
by double-exponential quadrature. Fortunately the error estimates and L1
norm are massive for these integrals, but nonetheless, oscillatory integrals
require different techniques.
</p>
<p>
A special mention should be made about integrating through zero: while our
range adaptors preserve precision when one endpoint is zero, things get harder
when the origin is neither in the center of the range, nor at an endpoint.
Consider integrating:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="serif_italic">1 / (1 +x^2)</span>
</p></blockquote></div>
<p>
Over (a, &#8734;). As long as <code class="computeroutput"><span class="identifier">a</span> <span class="special">&gt;=</span> <span class="number">0</span></code> both
the tanh_sinh and the exp_sinh integrators will handle this just fine: in
fact they provide a rather efficient method for this kind of integral. However,
if we have <code class="computeroutput"><span class="identifier">a</span> <span class="special">&lt;</span>
<span class="number">0</span></code> then we are forced to adapt the range
in a way that produces abscissa values near zero that have an absolute error
of &#949;, and since all of the area of the integral is near zero both integrators
thrash around trying to reach the target accuracy, but never actually get
there for <code class="computeroutput"><span class="identifier">a</span> <span class="special">&lt;&lt;</span>
<span class="number">0</span></code>. On the other hand, the simple expedient
of breaking the integral into two domains: (a, 0) and (0, b) and integrating
each seperately using the tanh-sinh integrator, works just fine.
</p>
<p>
Finally, some endpoint singularities are too strong to be handled by <code class="computeroutput"><span class="identifier">tanh_sinh</span></code> or equivalent methods, for example
consider integrating the function:
</p>
<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">p</span> <span class="special">=</span> <span class="identifier">some_value</span><span class="special">;</span>
<span class="identifier">tanh_sinh</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span> <span class="identifier">integrator</span><span class="special">;</span>
<span class="keyword">auto</span> <span class="identifier">f</span> <span class="special">=</span> <span class="special">[&amp;](</span><span class="keyword">double</span> <span class="identifier">x</span><span class="special">){</span> <span class="keyword">return</span> <span class="identifier">pow</span><span class="special">(</span><span class="identifier">tan</span><span class="special">(</span><span class="identifier">x</span><span class="special">),</span> <span class="identifier">p</span><span class="special">);</span> <span class="special">};</span>
<span class="keyword">auto</span> <span class="identifier">Q</span> <span class="special">=</span> <span class="identifier">integrator</span><span class="special">.</span><span class="identifier">integrate</span><span class="special">(</span><span class="identifier">f</span><span class="special">,</span> <span class="number">0</span><span class="special">,</span> <span class="identifier">constants</span><span class="special">::</span><span class="identifier">half_pi</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;());</span>
</pre>
<p>
The first problem with this function, is that the singularity is at &#960;/2, so
if we're integrating over (0, &#960;/2) then we can never approach closer to the
singularity than &#949;, and for p less than but close to 1, we need to get <span class="emphasis"><em>very</em></span>
close to the singularity to find all the area under the function. If we recall
the identity <code class="literal">tan(&#960;/2 - x) == 1/tan(x)</code> then we can rewrite
the function like this:
</p>
<pre class="programlisting"><span class="keyword">auto</span> <span class="identifier">f</span> <span class="special">=</span> <span class="special">[&amp;](</span><span class="keyword">double</span> <span class="identifier">x</span><span class="special">){</span> <span class="keyword">return</span> <span class="identifier">pow</span><span class="special">(</span><span class="identifier">tan</span><span class="special">(</span><span class="identifier">x</span><span class="special">),</span> <span class="special">-</span><span class="identifier">p</span><span class="special">);</span> <span class="special">};</span>
</pre>
<p>
And now the singularity is at the origin and we can get much closer to it
when evaluating the integral: all we have done is swap the integral endpoints
over.
</p>
<p>
This actually works just fine for p &lt; 0.95, but after that the <code class="computeroutput"><span class="identifier">tanh_sinh</span></code> integrator starts thrashing around
and is unable to converge on the integral. The problem is actually a lack
of exponent range: if we simply swap type double for something with a greater
exponent range (an 80-bit long double or a quad precision type), then we
can get to at least p = 0.99. If we want to go beyond that, or stick with
type double, then we have to get smart.
</p>
<p>
The easiest method is to notice that for small x, then <code class="literal">tan(x) &#8773; x</code>,
and so we are simply integrating x<sup>-p</sup>. Therefore we can use this approximation
over (0, small), and integrate numerically from (small, &#960;/2), using &#949; as a suitable
crossover point seems sensible:
</p>
<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">p</span> <span class="special">=</span> <span class="identifier">some_value</span><span class="special">;</span>
<span class="keyword">double</span> <span class="identifier">crossover</span> <span class="special">=</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;::</span><span class="identifier">epsilon</span><span class="special">();</span>
<span class="identifier">tanh_sinh</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span> <span class="identifier">integrator</span><span class="special">;</span>
<span class="keyword">auto</span> <span class="identifier">f</span> <span class="special">=</span> <span class="special">[&amp;](</span><span class="keyword">double</span> <span class="identifier">x</span><span class="special">){</span> <span class="keyword">return</span> <span class="identifier">pow</span><span class="special">(</span><span class="identifier">tan</span><span class="special">(</span><span class="identifier">x</span><span class="special">),</span> <span class="identifier">p</span><span class="special">);</span> <span class="special">};</span>
<span class="keyword">auto</span> <span class="identifier">Q</span> <span class="special">=</span> <span class="identifier">integrator</span><span class="special">.</span><span class="identifier">integrate</span><span class="special">(</span><span class="identifier">f</span><span class="special">,</span> <span class="identifier">crossover</span><span class="special">,</span> <span class="identifier">constants</span><span class="special">::</span><span class="identifier">half_pi</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;())</span> <span class="special">+</span> <span class="identifier">pow</span><span class="special">(</span><span class="identifier">crossover</span><span class="special">,</span> <span class="number">1</span> <span class="special">-</span> <span class="identifier">p</span><span class="special">)</span> <span class="special">/</span> <span class="special">(</span><span class="number">1</span> <span class="special">-</span> <span class="identifier">p</span><span class="special">);</span>
</pre>
<p>
There is an alternative, more complex method, which is applicable when we
are dealing with expressions which can be simplified by evaluating by logs.
Let's suppose that as in this case, all the area under the graph is infinitely
close to zero, now inagine that we could expand that region out over a much
larger range of abscissa values: that's exactly what happens if we perform
argument substitution, replacing <code class="computeroutput"><span class="identifier">x</span></code>
by <code class="computeroutput"><span class="identifier">exp</span><span class="special">(-</span><span class="identifier">x</span><span class="special">)</span></code> (note
that we must also multiply by the derivative of <code class="computeroutput"><span class="identifier">exp</span><span class="special">(-</span><span class="identifier">x</span><span class="special">)</span></code>).
Now the singularity at zero is moved to +&#8734;, and the &#960;/2 bound to -log(&#960;/2).
Initially our argument substituted function looks like:
</p>
<pre class="programlisting"><span class="keyword">auto</span> <span class="identifier">f</span> <span class="special">=</span> <span class="special">[&amp;](</span><span class="keyword">double</span> <span class="identifier">x</span><span class="special">){</span> <span class="keyword">return</span> <span class="identifier">exp</span><span class="special">(-</span><span class="identifier">x</span><span class="special">)</span> <span class="special">*</span> <span class="identifier">pow</span><span class="special">(</span><span class="identifier">tan</span><span class="special">(</span><span class="identifier">exp</span><span class="special">(-</span><span class="identifier">x</span><span class="special">)),</span> <span class="special">-</span><span class="identifier">p</span><span class="special">);</span> <span class="special">};</span>
</pre>
<p>
Which is hardly any better, as we still run out of exponent range just as
before. However, if we replace <code class="computeroutput"><span class="identifier">tan</span><span class="special">(</span><span class="identifier">exp</span><span class="special">(-</span><span class="identifier">x</span><span class="special">))</span></code> by
<code class="computeroutput"><span class="identifier">exp</span><span class="special">(-</span><span class="identifier">x</span><span class="special">)</span></code> for
suitably small <code class="computeroutput"><span class="identifier">exp</span><span class="special">(-</span><span class="identifier">x</span><span class="special">)</span></code>, and
therefore <code class="literal">x &gt; -log(&#949;)</code>, we can greatly simplify the expression
and evaluate by logs:
</p>
<pre class="programlisting"><span class="keyword">auto</span> <span class="identifier">f</span> <span class="special">=</span> <span class="special">[&amp;](</span><span class="keyword">double</span> <span class="identifier">x</span><span class="special">)</span>
<span class="special">{</span>
<span class="keyword">static</span> <span class="keyword">const</span> <span class="keyword">double</span> <span class="identifier">crossover</span> <span class="special">=</span> <span class="special">-</span><span class="identifier">log</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;::</span><span class="identifier">epsilon</span><span class="special">());</span>
<span class="keyword">return</span> <span class="identifier">x</span> <span class="special">&gt;</span> <span class="identifier">crossover</span> <span class="special">?</span> <span class="identifier">exp</span><span class="special">((</span><span class="identifier">p</span> <span class="special">-</span> <span class="number">1</span><span class="special">)</span> <span class="special">*</span> <span class="identifier">x</span><span class="special">)</span> <span class="special">:</span> <span class="identifier">exp</span><span class="special">(-</span><span class="identifier">x</span><span class="special">)</span> <span class="special">*</span> <span class="identifier">pow</span><span class="special">(</span><span class="identifier">tan</span><span class="special">(</span><span class="identifier">exp</span><span class="special">(-</span><span class="identifier">x</span><span class="special">)),</span> <span class="special">-</span><span class="identifier">p</span><span class="special">);</span>
<span class="special">};</span>
</pre>
<p>
This form integrates just fine over (-log(&#960;/2), +&#8734;) using either the <code class="computeroutput"><span class="identifier">tanh_sinh</span></code> or <code class="computeroutput"><span class="identifier">exp_sinh</span></code>
classes.
</p>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><div class="copyright-footer">Copyright &#169; 2006-2019 Nikhar
Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
R&#229;de, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
Daryle Walker and Xiaogang Zhang<p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>
</div></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="de_thread.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../double_exponential.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="de_refes.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>