72e469da0a
[CI SKIP]
190 lines
20 KiB
HTML
190 lines
20 KiB
HTML
<html>
|
|
<head>
|
|
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
|
|
<title>Caveats</title>
|
|
<link rel="stylesheet" href="../../math.css" type="text/css">
|
|
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
|
|
<link rel="home" href="../../index.html" title="Math Toolkit 2.11.0">
|
|
<link rel="up" href="../double_exponential.html" title="Double-exponential quadrature">
|
|
<link rel="prev" href="de_thread.html" title="Thread Safety">
|
|
<link rel="next" href="de_refes.html" title="References">
|
|
</head>
|
|
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
|
|
<table cellpadding="2" width="100%"><tr>
|
|
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td>
|
|
<td align="center"><a href="../../../../../../index.html">Home</a></td>
|
|
<td align="center"><a href="../../../../../../libs/libraries.htm">Libraries</a></td>
|
|
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
|
|
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
|
|
<td align="center"><a href="../../../../../../more/index.htm">More</a></td>
|
|
</tr></table>
|
|
<hr>
|
|
<div class="spirit-nav">
|
|
<a accesskey="p" href="de_thread.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../double_exponential.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="de_refes.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
|
|
</div>
|
|
<div class="section">
|
|
<div class="titlepage"><div><div><h3 class="title">
|
|
<a name="math_toolkit.double_exponential.de_caveats"></a><a class="link" href="de_caveats.html" title="Caveats">Caveats</a>
|
|
</h3></div></div></div>
|
|
<p>
|
|
A few things to keep in mind while using the tanh-sinh, exp-sinh, and sinh-sinh
|
|
quadratures:
|
|
</p>
|
|
<p>
|
|
These routines are <span class="bold"><strong>very</strong></span> aggressive about
|
|
approaching the endpoint singularities. This allows lots of significant digits
|
|
to be extracted, but also has another problem: Roundoff error can cause the
|
|
function to be evaluated at the endpoints. A few ways to avoid this: Narrow
|
|
up the bounds of integration to say, [a + ε, b - ε], make sure (a+b)/2 and
|
|
(b-a)/2 are representable, and finally, if you think the compromise between
|
|
accuracy an usability has gone too far in the direction of accuracy, file
|
|
a ticket.
|
|
</p>
|
|
<p>
|
|
Both exp-sinh and sinh-sinh quadratures evaluate the functions they are passed
|
|
at <span class="bold"><strong>very</strong></span> large argument. You might understand
|
|
that x<sup>12</sup>exp(-x) is should be zero when x<sup>12</sup> overflows, but IEEE floating point
|
|
arithmetic does not. Hence <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">pow</span><span class="special">(</span><span class="identifier">x</span><span class="special">,</span> <span class="number">12</span><span class="special">)*</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">exp</span><span class="special">(-</span><span class="identifier">x</span><span class="special">)</span></code> is an indeterminate form whenever <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">pow</span><span class="special">(</span><span class="identifier">x</span><span class="special">,</span>
|
|
<span class="number">12</span><span class="special">)</span></code>
|
|
overflows. So make sure your functions have the correct limiting behavior;
|
|
for example
|
|
</p>
|
|
<pre class="programlisting"><span class="keyword">auto</span> <span class="identifier">f</span> <span class="special">=</span> <span class="special">[](</span><span class="keyword">double</span> <span class="identifier">x</span><span class="special">)</span> <span class="special">{</span>
|
|
<span class="keyword">double</span> <span class="identifier">t</span> <span class="special">=</span> <span class="identifier">exp</span><span class="special">(-</span><span class="identifier">x</span><span class="special">);</span>
|
|
<span class="keyword">if</span><span class="special">(</span><span class="identifier">t</span> <span class="special">==</span> <span class="number">0</span><span class="special">)</span>
|
|
<span class="special">{</span>
|
|
<span class="keyword">return</span> <span class="number">0</span><span class="special">;</span>
|
|
<span class="special">}</span>
|
|
<span class="keyword">return</span> <span class="identifier">t</span><span class="special">*</span><span class="identifier">pow</span><span class="special">(</span><span class="identifier">x</span><span class="special">,</span> <span class="number">12</span><span class="special">);</span>
|
|
<span class="special">};</span>
|
|
</pre>
|
|
<p>
|
|
has the correct behavior for large <span class="emphasis"><em>x</em></span>, but <code class="computeroutput"><span class="keyword">auto</span> <span class="identifier">f</span> <span class="special">=</span> <span class="special">[](</span><span class="keyword">double</span>
|
|
<span class="identifier">x</span><span class="special">)</span> <span class="special">{</span> <span class="keyword">return</span> <span class="identifier">exp</span><span class="special">(-</span><span class="identifier">x</span><span class="special">)*</span><span class="identifier">pow</span><span class="special">(</span><span class="identifier">x</span><span class="special">,</span> <span class="number">12</span><span class="special">);</span> <span class="special">};</span></code> does
|
|
not.
|
|
</p>
|
|
<p>
|
|
Oscillatory integrals, such as the sinc integral, are poorly approximated
|
|
by double-exponential quadrature. Fortunately the error estimates and L1
|
|
norm are massive for these integrals, but nonetheless, oscillatory integrals
|
|
require different techniques.
|
|
</p>
|
|
<p>
|
|
A special mention should be made about integrating through zero: while our
|
|
range adaptors preserve precision when one endpoint is zero, things get harder
|
|
when the origin is neither in the center of the range, nor at an endpoint.
|
|
Consider integrating:
|
|
</p>
|
|
<div class="blockquote"><blockquote class="blockquote"><p>
|
|
<span class="serif_italic">1 / (1 +x^2)</span>
|
|
</p></blockquote></div>
|
|
<p>
|
|
Over (a, ∞). As long as <code class="computeroutput"><span class="identifier">a</span> <span class="special">>=</span> <span class="number">0</span></code> both
|
|
the tanh_sinh and the exp_sinh integrators will handle this just fine: in
|
|
fact they provide a rather efficient method for this kind of integral. However,
|
|
if we have <code class="computeroutput"><span class="identifier">a</span> <span class="special"><</span>
|
|
<span class="number">0</span></code> then we are forced to adapt the range
|
|
in a way that produces abscissa values near zero that have an absolute error
|
|
of ε, and since all of the area of the integral is near zero both integrators
|
|
thrash around trying to reach the target accuracy, but never actually get
|
|
there for <code class="computeroutput"><span class="identifier">a</span> <span class="special"><<</span>
|
|
<span class="number">0</span></code>. On the other hand, the simple expedient
|
|
of breaking the integral into two domains: (a, 0) and (0, b) and integrating
|
|
each seperately using the tanh-sinh integrator, works just fine.
|
|
</p>
|
|
<p>
|
|
Finally, some endpoint singularities are too strong to be handled by <code class="computeroutput"><span class="identifier">tanh_sinh</span></code> or equivalent methods, for example
|
|
consider integrating the function:
|
|
</p>
|
|
<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">p</span> <span class="special">=</span> <span class="identifier">some_value</span><span class="special">;</span>
|
|
<span class="identifier">tanh_sinh</span><span class="special"><</span><span class="keyword">double</span><span class="special">></span> <span class="identifier">integrator</span><span class="special">;</span>
|
|
<span class="keyword">auto</span> <span class="identifier">f</span> <span class="special">=</span> <span class="special">[&](</span><span class="keyword">double</span> <span class="identifier">x</span><span class="special">){</span> <span class="keyword">return</span> <span class="identifier">pow</span><span class="special">(</span><span class="identifier">tan</span><span class="special">(</span><span class="identifier">x</span><span class="special">),</span> <span class="identifier">p</span><span class="special">);</span> <span class="special">};</span>
|
|
<span class="keyword">auto</span> <span class="identifier">Q</span> <span class="special">=</span> <span class="identifier">integrator</span><span class="special">.</span><span class="identifier">integrate</span><span class="special">(</span><span class="identifier">f</span><span class="special">,</span> <span class="number">0</span><span class="special">,</span> <span class="identifier">constants</span><span class="special">::</span><span class="identifier">half_pi</span><span class="special"><</span><span class="keyword">double</span><span class="special">>());</span>
|
|
</pre>
|
|
<p>
|
|
The first problem with this function, is that the singularity is at π/2, so
|
|
if we're integrating over (0, π/2) then we can never approach closer to the
|
|
singularity than ε, and for p less than but close to 1, we need to get <span class="emphasis"><em>very</em></span>
|
|
close to the singularity to find all the area under the function. If we recall
|
|
the identity <code class="literal">tan(π/2 - x) == 1/tan(x)</code> then we can rewrite
|
|
the function like this:
|
|
</p>
|
|
<pre class="programlisting"><span class="keyword">auto</span> <span class="identifier">f</span> <span class="special">=</span> <span class="special">[&](</span><span class="keyword">double</span> <span class="identifier">x</span><span class="special">){</span> <span class="keyword">return</span> <span class="identifier">pow</span><span class="special">(</span><span class="identifier">tan</span><span class="special">(</span><span class="identifier">x</span><span class="special">),</span> <span class="special">-</span><span class="identifier">p</span><span class="special">);</span> <span class="special">};</span>
|
|
</pre>
|
|
<p>
|
|
And now the singularity is at the origin and we can get much closer to it
|
|
when evaluating the integral: all we have done is swap the integral endpoints
|
|
over.
|
|
</p>
|
|
<p>
|
|
This actually works just fine for p < 0.95, but after that the <code class="computeroutput"><span class="identifier">tanh_sinh</span></code> integrator starts thrashing around
|
|
and is unable to converge on the integral. The problem is actually a lack
|
|
of exponent range: if we simply swap type double for something with a greater
|
|
exponent range (an 80-bit long double or a quad precision type), then we
|
|
can get to at least p = 0.99. If we want to go beyond that, or stick with
|
|
type double, then we have to get smart.
|
|
</p>
|
|
<p>
|
|
The easiest method is to notice that for small x, then <code class="literal">tan(x) ≅ x</code>,
|
|
and so we are simply integrating x<sup>-p</sup>. Therefore we can use this approximation
|
|
over (0, small), and integrate numerically from (small, π/2), using ε as a suitable
|
|
crossover point seems sensible:
|
|
</p>
|
|
<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">p</span> <span class="special">=</span> <span class="identifier">some_value</span><span class="special">;</span>
|
|
<span class="keyword">double</span> <span class="identifier">crossover</span> <span class="special">=</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special"><</span><span class="keyword">double</span><span class="special">>::</span><span class="identifier">epsilon</span><span class="special">();</span>
|
|
<span class="identifier">tanh_sinh</span><span class="special"><</span><span class="keyword">double</span><span class="special">></span> <span class="identifier">integrator</span><span class="special">;</span>
|
|
<span class="keyword">auto</span> <span class="identifier">f</span> <span class="special">=</span> <span class="special">[&](</span><span class="keyword">double</span> <span class="identifier">x</span><span class="special">){</span> <span class="keyword">return</span> <span class="identifier">pow</span><span class="special">(</span><span class="identifier">tan</span><span class="special">(</span><span class="identifier">x</span><span class="special">),</span> <span class="identifier">p</span><span class="special">);</span> <span class="special">};</span>
|
|
<span class="keyword">auto</span> <span class="identifier">Q</span> <span class="special">=</span> <span class="identifier">integrator</span><span class="special">.</span><span class="identifier">integrate</span><span class="special">(</span><span class="identifier">f</span><span class="special">,</span> <span class="identifier">crossover</span><span class="special">,</span> <span class="identifier">constants</span><span class="special">::</span><span class="identifier">half_pi</span><span class="special"><</span><span class="keyword">double</span><span class="special">>())</span> <span class="special">+</span> <span class="identifier">pow</span><span class="special">(</span><span class="identifier">crossover</span><span class="special">,</span> <span class="number">1</span> <span class="special">-</span> <span class="identifier">p</span><span class="special">)</span> <span class="special">/</span> <span class="special">(</span><span class="number">1</span> <span class="special">-</span> <span class="identifier">p</span><span class="special">);</span>
|
|
</pre>
|
|
<p>
|
|
There is an alternative, more complex method, which is applicable when we
|
|
are dealing with expressions which can be simplified by evaluating by logs.
|
|
Let's suppose that as in this case, all the area under the graph is infinitely
|
|
close to zero, now inagine that we could expand that region out over a much
|
|
larger range of abscissa values: that's exactly what happens if we perform
|
|
argument substitution, replacing <code class="computeroutput"><span class="identifier">x</span></code>
|
|
by <code class="computeroutput"><span class="identifier">exp</span><span class="special">(-</span><span class="identifier">x</span><span class="special">)</span></code> (note
|
|
that we must also multiply by the derivative of <code class="computeroutput"><span class="identifier">exp</span><span class="special">(-</span><span class="identifier">x</span><span class="special">)</span></code>).
|
|
Now the singularity at zero is moved to +∞, and the π/2 bound to -log(π/2).
|
|
Initially our argument substituted function looks like:
|
|
</p>
|
|
<pre class="programlisting"><span class="keyword">auto</span> <span class="identifier">f</span> <span class="special">=</span> <span class="special">[&](</span><span class="keyword">double</span> <span class="identifier">x</span><span class="special">){</span> <span class="keyword">return</span> <span class="identifier">exp</span><span class="special">(-</span><span class="identifier">x</span><span class="special">)</span> <span class="special">*</span> <span class="identifier">pow</span><span class="special">(</span><span class="identifier">tan</span><span class="special">(</span><span class="identifier">exp</span><span class="special">(-</span><span class="identifier">x</span><span class="special">)),</span> <span class="special">-</span><span class="identifier">p</span><span class="special">);</span> <span class="special">};</span>
|
|
</pre>
|
|
<p>
|
|
Which is hardly any better, as we still run out of exponent range just as
|
|
before. However, if we replace <code class="computeroutput"><span class="identifier">tan</span><span class="special">(</span><span class="identifier">exp</span><span class="special">(-</span><span class="identifier">x</span><span class="special">))</span></code> by
|
|
<code class="computeroutput"><span class="identifier">exp</span><span class="special">(-</span><span class="identifier">x</span><span class="special">)</span></code> for
|
|
suitably small <code class="computeroutput"><span class="identifier">exp</span><span class="special">(-</span><span class="identifier">x</span><span class="special">)</span></code>, and
|
|
therefore <code class="literal">x > -log(ε)</code>, we can greatly simplify the expression
|
|
and evaluate by logs:
|
|
</p>
|
|
<pre class="programlisting"><span class="keyword">auto</span> <span class="identifier">f</span> <span class="special">=</span> <span class="special">[&](</span><span class="keyword">double</span> <span class="identifier">x</span><span class="special">)</span>
|
|
<span class="special">{</span>
|
|
<span class="keyword">static</span> <span class="keyword">const</span> <span class="keyword">double</span> <span class="identifier">crossover</span> <span class="special">=</span> <span class="special">-</span><span class="identifier">log</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special"><</span><span class="keyword">double</span><span class="special">>::</span><span class="identifier">epsilon</span><span class="special">());</span>
|
|
<span class="keyword">return</span> <span class="identifier">x</span> <span class="special">></span> <span class="identifier">crossover</span> <span class="special">?</span> <span class="identifier">exp</span><span class="special">((</span><span class="identifier">p</span> <span class="special">-</span> <span class="number">1</span><span class="special">)</span> <span class="special">*</span> <span class="identifier">x</span><span class="special">)</span> <span class="special">:</span> <span class="identifier">exp</span><span class="special">(-</span><span class="identifier">x</span><span class="special">)</span> <span class="special">*</span> <span class="identifier">pow</span><span class="special">(</span><span class="identifier">tan</span><span class="special">(</span><span class="identifier">exp</span><span class="special">(-</span><span class="identifier">x</span><span class="special">)),</span> <span class="special">-</span><span class="identifier">p</span><span class="special">);</span>
|
|
<span class="special">};</span>
|
|
</pre>
|
|
<p>
|
|
This form integrates just fine over (-log(π/2), +∞) using either the <code class="computeroutput"><span class="identifier">tanh_sinh</span></code> or <code class="computeroutput"><span class="identifier">exp_sinh</span></code>
|
|
classes.
|
|
</p>
|
|
</div>
|
|
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
|
|
<td align="left"></td>
|
|
<td align="right"><div class="copyright-footer">Copyright © 2006-2019 Nikhar
|
|
Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
|
|
Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
|
|
Råde, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
|
|
Daryle Walker and Xiaogang Zhang<p>
|
|
Distributed under the Boost Software License, Version 1.0. (See accompanying
|
|
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
|
|
</p>
|
|
</div></td>
|
|
</tr></table>
|
|
<hr>
|
|
<div class="spirit-nav">
|
|
<a accesskey="p" href="de_thread.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../double_exponential.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="de_refes.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
|
|
</div>
|
|
</body>
|
|
</html>
|