72e469da0a
[CI SKIP]
364 lines
25 KiB
HTML
364 lines
25 KiB
HTML
<html>
|
|
<head>
|
|
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
|
|
<title>Elliptic Integrals of the Third Kind - Legendre Form</title>
|
|
<link rel="stylesheet" href="../../math.css" type="text/css">
|
|
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
|
|
<link rel="home" href="../../index.html" title="Math Toolkit 2.11.0">
|
|
<link rel="up" href="../ellint.html" title="Elliptic Integrals">
|
|
<link rel="prev" href="ellint_2.html" title="Elliptic Integrals of the Second Kind - Legendre Form">
|
|
<link rel="next" href="ellint_d.html" title="Elliptic Integral D - Legendre Form">
|
|
</head>
|
|
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
|
|
<table cellpadding="2" width="100%"><tr>
|
|
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td>
|
|
<td align="center"><a href="../../../../../../index.html">Home</a></td>
|
|
<td align="center"><a href="../../../../../../libs/libraries.htm">Libraries</a></td>
|
|
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
|
|
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
|
|
<td align="center"><a href="../../../../../../more/index.htm">More</a></td>
|
|
</tr></table>
|
|
<hr>
|
|
<div class="spirit-nav">
|
|
<a accesskey="p" href="ellint_2.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../ellint.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="ellint_d.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
|
|
</div>
|
|
<div class="section">
|
|
<div class="titlepage"><div><div><h3 class="title">
|
|
<a name="math_toolkit.ellint.ellint_3"></a><a class="link" href="ellint_3.html" title="Elliptic Integrals of the Third Kind - Legendre Form">Elliptic Integrals of the
|
|
Third Kind - Legendre Form</a>
|
|
</h3></div></div></div>
|
|
<h5>
|
|
<a name="math_toolkit.ellint.ellint_3.h0"></a>
|
|
<span class="phrase"><a name="math_toolkit.ellint.ellint_3.synopsis"></a></span><a class="link" href="ellint_3.html#math_toolkit.ellint.ellint_3.synopsis">Synopsis</a>
|
|
</h5>
|
|
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">special_functions</span><span class="special">/</span><span class="identifier">ellint_3</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
|
|
</pre>
|
|
<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span> <span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span> <span class="special">{</span>
|
|
|
|
<span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T3</span><span class="special">></span>
|
|
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_3</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">n</span><span class="special">,</span> <span class="identifier">T3</span> <span class="identifier">phi</span><span class="special">);</span>
|
|
|
|
<span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T3</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 20. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">></span>
|
|
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_3</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">n</span><span class="special">,</span> <span class="identifier">T3</span> <span class="identifier">phi</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 20. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&);</span>
|
|
|
|
<span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">></span>
|
|
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_3</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">n</span><span class="special">);</span>
|
|
|
|
<span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 20. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">></span>
|
|
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_3</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 20. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&);</span>
|
|
|
|
<span class="special">}}</span> <span class="comment">// namespaces</span>
|
|
</pre>
|
|
<h5>
|
|
<a name="math_toolkit.ellint.ellint_3.h1"></a>
|
|
<span class="phrase"><a name="math_toolkit.ellint.ellint_3.description"></a></span><a class="link" href="ellint_3.html#math_toolkit.ellint.ellint_3.description">Description</a>
|
|
</h5>
|
|
<p>
|
|
These two functions evaluate the incomplete elliptic integral of the third
|
|
kind <span class="emphasis"><em>Π(n, φ, k)</em></span> and its complete counterpart <span class="emphasis"><em>Π(n,
|
|
k) = E(n, π/2, k)</em></span>.
|
|
</p>
|
|
<div class="blockquote"><blockquote class="blockquote"><p>
|
|
<span class="inlinemediaobject"><img src="../../../graphs/ellint_3.svg" align="middle"></span>
|
|
|
|
</p></blockquote></div>
|
|
<p>
|
|
The return type of these functions is computed using the <a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>result
|
|
type calculation rules</em></span></a> when the arguments are of different
|
|
types: when they are the same type then the result is the same type as the
|
|
arguments.
|
|
</p>
|
|
<pre class="programlisting"><span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T3</span><span class="special">></span>
|
|
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_3</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">n</span><span class="special">,</span> <span class="identifier">T3</span> <span class="identifier">phi</span><span class="special">);</span>
|
|
|
|
<span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T3</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 20. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">></span>
|
|
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_3</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">n</span><span class="special">,</span> <span class="identifier">T3</span> <span class="identifier">phi</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 20. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&);</span>
|
|
</pre>
|
|
<p>
|
|
Returns the incomplete elliptic integral of the third kind <span class="emphasis"><em>Π(n,
|
|
φ, k)</em></span>:
|
|
</p>
|
|
<div class="blockquote"><blockquote class="blockquote"><p>
|
|
<span class="inlinemediaobject"><img src="../../../equations/ellint4.svg"></span>
|
|
|
|
</p></blockquote></div>
|
|
<p>
|
|
Requires <span class="emphasis"><em>k<sup>2</sup>sin<sup>2</sup>(phi) < 1</em></span> and <span class="emphasis"><em>n < 1/sin<sup>2</sup>(φ)</em></span>,
|
|
otherwise returns the result of <a class="link" href="../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>
|
|
(outside this range the result would be complex).
|
|
</p>
|
|
<p>
|
|
The final <a class="link" href="../../policy.html" title="Chapter 20. Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
|
|
be used to control the behaviour of the function: how it handles errors,
|
|
what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Chapter 20. Policies: Controlling Precision, Error Handling etc">policy
|
|
documentation for more details</a>.
|
|
</p>
|
|
<pre class="programlisting"><span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">></span>
|
|
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_3</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">n</span><span class="special">);</span>
|
|
|
|
<span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 20. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">></span>
|
|
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_3</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 20. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&);</span>
|
|
</pre>
|
|
<p>
|
|
Returns the complete elliptic integral of the first kind <span class="emphasis"><em>Π(n, k)</em></span>:
|
|
</p>
|
|
<div class="blockquote"><blockquote class="blockquote"><p>
|
|
<span class="inlinemediaobject"><img src="../../../equations/ellint8.svg"></span>
|
|
|
|
</p></blockquote></div>
|
|
<p>
|
|
Requires <span class="emphasis"><em>|k| < 1</em></span> and <span class="emphasis"><em>n < 1</em></span>,
|
|
otherwise returns the result of <a class="link" href="../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>
|
|
(outside this range the result would be complex).
|
|
</p>
|
|
<p>
|
|
The final <a class="link" href="../../policy.html" title="Chapter 20. Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
|
|
be used to control the behaviour of the function: how it handles errors,
|
|
what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Chapter 20. Policies: Controlling Precision, Error Handling etc">policy
|
|
documentation for more details</a>.
|
|
</p>
|
|
<h5>
|
|
<a name="math_toolkit.ellint.ellint_3.h2"></a>
|
|
<span class="phrase"><a name="math_toolkit.ellint.ellint_3.accuracy"></a></span><a class="link" href="ellint_3.html#math_toolkit.ellint.ellint_3.accuracy">Accuracy</a>
|
|
</h5>
|
|
<p>
|
|
These functions are computed using only basic arithmetic operations, so there
|
|
isn't much variation in accuracy over differing platforms. Note that only
|
|
results for the widest floating point type on the system are given as narrower
|
|
types have <a class="link" href="../relative_error.html#math_toolkit.relative_error.zero_error">effectively
|
|
zero error</a>. All values are relative errors in units of epsilon.
|
|
</p>
|
|
<div class="table">
|
|
<a name="math_toolkit.ellint.ellint_3.table_ellint_3"></a><p class="title"><b>Table 8.65. Error rates for ellint_3</b></p>
|
|
<div class="table-contents"><table class="table" summary="Error rates for ellint_3">
|
|
<colgroup>
|
|
<col>
|
|
<col>
|
|
<col>
|
|
<col>
|
|
<col>
|
|
</colgroup>
|
|
<thead><tr>
|
|
<th>
|
|
</th>
|
|
<th>
|
|
<p>
|
|
GNU C++ version 7.1.0<br> linux<br> long double
|
|
</p>
|
|
</th>
|
|
<th>
|
|
<p>
|
|
GNU C++ version 7.1.0<br> linux<br> double
|
|
</p>
|
|
</th>
|
|
<th>
|
|
<p>
|
|
Sun compiler version 0x5150<br> Sun Solaris<br> long double
|
|
</p>
|
|
</th>
|
|
<th>
|
|
<p>
|
|
Microsoft Visual C++ version 14.1<br> Win32<br> double
|
|
</p>
|
|
</th>
|
|
</tr></thead>
|
|
<tbody>
|
|
<tr>
|
|
<td>
|
|
<p>
|
|
Elliptic Integral PI: Mathworld Data
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
<span class="blue">Max = 475ε (Mean = 86.3ε)</span><br> <br>
|
|
(<span class="emphasis"><em><cmath>:</em></span> <span class="red">Max = +INFε (Mean
|
|
= +INFε) <a class="link" href="../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_long_double_ellint_3__cmath__Elliptic_Integral_PI_Mathworld_Data">And
|
|
other failures.</a>)</span>
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
<span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
|
|
2.1:</em></span> Max = 1.48e+05ε (Mean = 2.54e+04ε) <a class="link" href="../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_double_ellint_3_GSL_2_1_Elliptic_Integral_PI_Mathworld_Data">And
|
|
other failures.</a>)
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
<span class="blue">Max = 475ε (Mean = 86.3ε)</span>
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
<span class="blue">Max = 565ε (Mean = 102ε)</span>
|
|
</p>
|
|
</td>
|
|
</tr>
|
|
<tr>
|
|
<td>
|
|
<p>
|
|
Elliptic Integral PI: Random Data
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
<span class="blue">Max = 4.54ε (Mean = 0.895ε)</span><br> <br>
|
|
(<span class="emphasis"><em><cmath>:</em></span> <span class="red">Max = 3.37e+20ε (Mean
|
|
= 3.47e+19ε) <a class="link" href="../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_long_double_ellint_3__cmath__Elliptic_Integral_PI_Random_Data">And
|
|
other failures.</a>)</span>
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
<span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
|
|
2.1:</em></span> Max = 633ε (Mean = 50.1ε))
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
<span class="blue">Max = 4.49ε (Mean = 0.885ε)</span>
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
<span class="blue">Max = 8.33ε (Mean = 0.971ε)</span>
|
|
</p>
|
|
</td>
|
|
</tr>
|
|
<tr>
|
|
<td>
|
|
<p>
|
|
Elliptic Integral PI: Large Random Data
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
<span class="blue">Max = 3.7ε (Mean = 0.893ε)</span><br> <br>
|
|
(<span class="emphasis"><em><cmath>:</em></span> <span class="red">Max = 2.52e+18ε (Mean
|
|
= 4.83e+17ε) <a class="link" href="../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_long_double_ellint_3__cmath__Elliptic_Integral_PI_Large_Random_Data">And
|
|
other failures.</a>)</span>
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
<span class="blue">Max = 0.557ε (Mean = 0.0389ε)</span><br>
|
|
<br> (<span class="emphasis"><em>GSL 2.1:</em></span> Max = 40.1ε (Mean = 7.77ε))
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
<span class="blue">Max = 3.7ε (Mean = 0.892ε)</span>
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
<span class="blue">Max = 2.86ε (Mean = 0.944ε)</span>
|
|
</p>
|
|
</td>
|
|
</tr>
|
|
</tbody>
|
|
</table></div>
|
|
</div>
|
|
<br class="table-break"><h5>
|
|
<a name="math_toolkit.ellint.ellint_3.h3"></a>
|
|
<span class="phrase"><a name="math_toolkit.ellint.ellint_3.testing"></a></span><a class="link" href="ellint_3.html#math_toolkit.ellint.ellint_3.testing">Testing</a>
|
|
</h5>
|
|
<p>
|
|
The tests use a mixture of spot test values calculated using the online calculator
|
|
at <a href="http://functions.wolfram.com" target="_top">functions.wolfram.com</a>,
|
|
and random test data generated using NTL::RR at 1000-bit precision and this
|
|
implementation.
|
|
</p>
|
|
<h5>
|
|
<a name="math_toolkit.ellint.ellint_3.h4"></a>
|
|
<span class="phrase"><a name="math_toolkit.ellint.ellint_3.implementation"></a></span><a class="link" href="ellint_3.html#math_toolkit.ellint.ellint_3.implementation">Implementation</a>
|
|
</h5>
|
|
<p>
|
|
The implementation for Π(n, φ, k) first siphons off the special cases:
|
|
</p>
|
|
<div class="blockquote"><blockquote class="blockquote"><p>
|
|
<span class="serif_italic"><span class="emphasis"><em>Π(0, φ, k) = F(φ, k)</em></span></span>
|
|
</p></blockquote></div>
|
|
<div class="blockquote"><blockquote class="blockquote"><p>
|
|
<span class="serif_italic"><span class="emphasis"><em>Π(n, π/2, k) = Π(n, k)</em></span></span>
|
|
</p></blockquote></div>
|
|
<p>
|
|
and
|
|
</p>
|
|
<div class="blockquote"><blockquote class="blockquote"><p>
|
|
<span class="inlinemediaobject"><img src="../../../equations/ellint23.svg"></span>
|
|
|
|
</p></blockquote></div>
|
|
<p>
|
|
Then if n < 0 the relations (A&S 17.7.15/16):
|
|
</p>
|
|
<div class="blockquote"><blockquote class="blockquote"><p>
|
|
<span class="inlinemediaobject"><img src="../../../equations/ellint24.svg"></span>
|
|
|
|
</p></blockquote></div>
|
|
<p>
|
|
are used to shift <span class="emphasis"><em>n</em></span> to the range [0, 1].
|
|
</p>
|
|
<p>
|
|
Then the relations:
|
|
</p>
|
|
<div class="blockquote"><blockquote class="blockquote"><p>
|
|
<span class="serif_italic"><span class="emphasis"><em>Π(n, -φ, k) = -Π(n, φ, k)</em></span></span>
|
|
</p></blockquote></div>
|
|
<div class="blockquote"><blockquote class="blockquote"><p>
|
|
<span class="serif_italic"><span class="emphasis"><em>Π(n, φ+mπ, k) = Π(n, φ, k) + 2mΠ(n, k)
|
|
; n <= 1</em></span></span>
|
|
</p></blockquote></div>
|
|
<div class="blockquote"><blockquote class="blockquote"><p>
|
|
<span class="serif_italic"><span class="emphasis"><em>Π(n, φ+mπ, k) = Π(n, φ, k) ; n > 1</em></span>
|
|
       
|
|
<a href="#ftn.math_toolkit.ellint.ellint_3.f0" class="footnote" name="math_toolkit.ellint.ellint_3.f0"><sup class="footnote">[1]</sup></a></span>
|
|
</p></blockquote></div>
|
|
<p>
|
|
are used to move φ to the range [0, π/2].
|
|
</p>
|
|
<p>
|
|
The functions are then implemented in terms of Carlson's integrals using
|
|
the relations:
|
|
</p>
|
|
<div class="blockquote"><blockquote class="blockquote"><p>
|
|
<span class="inlinemediaobject"><img src="../../../equations/ellint25.svg"></span>
|
|
|
|
</p></blockquote></div>
|
|
<p>
|
|
and
|
|
</p>
|
|
<div class="blockquote"><blockquote class="blockquote"><p>
|
|
<span class="inlinemediaobject"><img src="../../../equations/ellint26.svg"></span>
|
|
|
|
</p></blockquote></div>
|
|
<div class="footnotes">
|
|
<br><hr style="width:100; text-align:left;margin-left: 0">
|
|
<div id="ftn.math_toolkit.ellint.ellint_3.f0" class="footnote"><p><a href="#math_toolkit.ellint.ellint_3.f0" class="para"><sup class="para">[1] </sup></a>
|
|
I haven't been able to find a literature reference for this relation,
|
|
but it appears to be the convention used by Mathematica. Intuitively
|
|
the first <span class="emphasis"><em>2 * m * Π(n, k)</em></span> terms cancel out as the
|
|
derivative alternates between +∞ and -∞.
|
|
</p></div>
|
|
</div>
|
|
</div>
|
|
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
|
|
<td align="left"></td>
|
|
<td align="right"><div class="copyright-footer">Copyright © 2006-2019 Nikhar
|
|
Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
|
|
Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
|
|
Råde, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
|
|
Daryle Walker and Xiaogang Zhang<p>
|
|
Distributed under the Boost Software License, Version 1.0. (See accompanying
|
|
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
|
|
</p>
|
|
</div></td>
|
|
</tr></table>
|
|
<hr>
|
|
<div class="spirit-nav">
|
|
<a accesskey="p" href="ellint_2.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../ellint.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="ellint_d.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
|
|
</div>
|
|
</body>
|
|
</html>
|