math/doc/html/math_toolkit/ellint/ellint_d.html
2019-10-31 17:55:35 +00:00

383 lines
22 KiB
HTML

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>Elliptic Integral D - Legendre Form</title>
<link rel="stylesheet" href="../../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
<link rel="home" href="../../index.html" title="Math Toolkit 2.11.0">
<link rel="up" href="../ellint.html" title="Elliptic Integrals">
<link rel="prev" href="ellint_3.html" title="Elliptic Integrals of the Third Kind - Legendre Form">
<link rel="next" href="jacobi_zeta.html" title="Jacobi Zeta Function">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td>
<td align="center"><a href="../../../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="ellint_3.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../ellint.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="jacobi_zeta.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h3 class="title">
<a name="math_toolkit.ellint.ellint_d"></a><a class="link" href="ellint_d.html" title="Elliptic Integral D - Legendre Form">Elliptic Integral D - Legendre
Form</a>
</h3></div></div></div>
<h5>
<a name="math_toolkit.ellint.ellint_d.h0"></a>
<span class="phrase"><a name="math_toolkit.ellint.ellint_d.synopsis"></a></span><a class="link" href="ellint_d.html#math_toolkit.ellint.ellint_d.synopsis">Synopsis</a>
</h5>
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">special_functions</span><span class="special">/</span><span class="identifier">ellint_d</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
</pre>
<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span> <span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span> <span class="special">{</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_d</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter&#160;20.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_d</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">phi</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter&#160;20.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_d</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">);</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter&#160;20.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_d</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter&#160;20.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
<span class="special">}}</span> <span class="comment">// namespaces</span>
</pre>
<h5>
<a name="math_toolkit.ellint.ellint_d.h1"></a>
<span class="phrase"><a name="math_toolkit.ellint.ellint_d.description"></a></span><a class="link" href="ellint_d.html#math_toolkit.ellint.ellint_d.description">Description</a>
</h5>
<p>
These two functions evaluate the incomplete elliptic integral <span class="emphasis"><em>D(&#966;,
k)</em></span> and its complete counterpart <span class="emphasis"><em>D(k) = D(&#960;/2, k)</em></span>.
</p>
<p>
The return type of these functions is computed using the <a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>result
type calculation rules</em></span></a> when the arguments are of different
types: when they are the same type then the result is the same type as the
arguments.
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_d</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter&#160;20.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_3</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">phi</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter&#160;20.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
</pre>
<p>
Returns the incomplete elliptic integral:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../equations/ellint_d.svg"></span>
</p></blockquote></div>
<p>
Requires <span class="emphasis"><em>k<sup>2</sup>sin<sup>2</sup>(phi) &lt; 1</em></span>, otherwise returns the result
of <a class="link" href="../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>
(outside this range the result would be complex).
</p>
<p>
The final <a class="link" href="../../policy.html" title="Chapter&#160;20.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
be used to control the behaviour of the function: how it handles errors,
what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Chapter&#160;20.&#160;Policies: Controlling Precision, Error Handling etc">policy
documentation for more details</a>.
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_d</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">);</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter&#160;20.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_d</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter&#160;20.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
</pre>
<p>
Returns the complete elliptic integral <span class="emphasis"><em>D(k) = D(&#960;/2, k)</em></span>
</p>
<p>
Requires <span class="emphasis"><em>-1 &lt;= k &lt;= 1</em></span> otherwise returns the result
of <a class="link" href="../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>
(outside this range the result would be complex).
</p>
<p>
The final <a class="link" href="../../policy.html" title="Chapter&#160;20.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
be used to control the behaviour of the function: how it handles errors,
what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Chapter&#160;20.&#160;Policies: Controlling Precision, Error Handling etc">policy
documentation for more details</a>.
</p>
<h5>
<a name="math_toolkit.ellint.ellint_d.h2"></a>
<span class="phrase"><a name="math_toolkit.ellint.ellint_d.accuracy"></a></span><a class="link" href="ellint_d.html#math_toolkit.ellint.ellint_d.accuracy">Accuracy</a>
</h5>
<p>
These functions are trivially computed in terms of other elliptic integrals
and generally have very low error rates (a few epsilon) unless parameter
&#966;
is very large, in which case the usual trigonometric function argument-reduction
issues apply.
</p>
<div class="table">
<a name="math_toolkit.ellint.ellint_d.table_ellint_d_complete_"></a><p class="title"><b>Table&#160;8.66.&#160;Error rates for ellint_d (complete)</b></p>
<div class="table-contents"><table class="table" summary="Error rates for ellint_d (complete)">
<colgroup>
<col>
<col>
<col>
<col>
<col>
</colgroup>
<thead><tr>
<th>
</th>
<th>
<p>
GNU C++ version 7.1.0<br> linux<br> double
</p>
</th>
<th>
<p>
GNU C++ version 7.1.0<br> linux<br> long double
</p>
</th>
<th>
<p>
Sun compiler version 0x5150<br> Sun Solaris<br> long double
</p>
</th>
<th>
<p>
Microsoft Visual C++ version 14.1<br> Win32<br> double
</p>
</th>
</tr></thead>
<tbody>
<tr>
<td>
<p>
Elliptic Integral E: Mathworld Data
</p>
</td>
<td>
<p>
<span class="blue">Max = 0.637&#949; (Mean = 0.368&#949;)</span>
</p>
</td>
<td>
<p>
<span class="blue">Max = 1.27&#949; (Mean = 0.735&#949;)</span>
</p>
</td>
<td>
<p>
<span class="blue">Max = 1.27&#949; (Mean = 0.735&#949;)</span>
</p>
</td>
<td>
<p>
<span class="blue">Max = 0.637&#949; (Mean = 0.368&#949;)</span>
</p>
</td>
</tr>
<tr>
<td>
<p>
Elliptic Integral D: Random Data
</p>
</td>
<td>
<p>
<span class="blue">Max = 0&#949; (Mean = 0&#949;)</span>
</p>
</td>
<td>
<p>
<span class="blue">Max = 1.27&#949; (Mean = 0.334&#949;)</span>
</p>
</td>
<td>
<p>
<span class="blue">Max = 1.27&#949; (Mean = 0.334&#949;)</span>
</p>
</td>
<td>
<p>
<span class="blue">Max = 1.27&#949; (Mean = 0.355&#949;)</span>
</p>
</td>
</tr>
</tbody>
</table></div>
</div>
<br class="table-break"><div class="table">
<a name="math_toolkit.ellint.ellint_d.table_ellint_d"></a><p class="title"><b>Table&#160;8.67.&#160;Error rates for ellint_d</b></p>
<div class="table-contents"><table class="table" summary="Error rates for ellint_d">
<colgroup>
<col>
<col>
<col>
<col>
<col>
</colgroup>
<thead><tr>
<th>
</th>
<th>
<p>
GNU C++ version 7.1.0<br> linux<br> double
</p>
</th>
<th>
<p>
GNU C++ version 7.1.0<br> linux<br> long double
</p>
</th>
<th>
<p>
Sun compiler version 0x5150<br> Sun Solaris<br> long double
</p>
</th>
<th>
<p>
Microsoft Visual C++ version 14.1<br> Win32<br> double
</p>
</th>
</tr></thead>
<tbody>
<tr>
<td>
<p>
Elliptic Integral E: Mathworld Data
</p>
</td>
<td>
<p>
<span class="blue">Max = 0&#949; (Mean = 0&#949;)</span><br> <br> (<span class="emphasis"><em>GSL
2.1:</em></span> Max = 0.862&#949; (Mean = 0.568&#949;))
</p>
</td>
<td>
<p>
<span class="blue">Max = 1.3&#949; (Mean = 0.813&#949;)</span>
</p>
</td>
<td>
<p>
<span class="blue">Max = 1.3&#949; (Mean = 0.813&#949;)</span>
</p>
</td>
<td>
<p>
<span class="blue">Max = 0.862&#949; (Mean = 0.457&#949;)</span>
</p>
</td>
</tr>
<tr>
<td>
<p>
Elliptic Integral D: Random Data
</p>
</td>
<td>
<p>
<span class="blue">Max = 0&#949; (Mean = 0&#949;)</span><br> <br> (<span class="emphasis"><em>GSL
2.1:</em></span> Max = 3.01&#949; (Mean = 0.928&#949;))
</p>
</td>
<td>
<p>
<span class="blue">Max = 2.51&#949; (Mean = 0.883&#949;)</span>
</p>
</td>
<td>
<p>
<span class="blue">Max = 2.51&#949; (Mean = 0.883&#949;)</span>
</p>
</td>
<td>
<p>
<span class="blue">Max = 2.87&#949; (Mean = 0.805&#949;)</span>
</p>
</td>
</tr>
</tbody>
</table></div>
</div>
<br class="table-break"><p>
The following error plot are based on an exhaustive search of the functions
domain, MSVC-15.5 at <code class="computeroutput"><span class="keyword">double</span></code>
precision, and GCC-7.1/Ubuntu for <code class="computeroutput"><span class="keyword">long</span>
<span class="keyword">double</span></code> and <code class="computeroutput"><span class="identifier">__float128</span></code>.
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../graphs/elliptic_integral_d__double.svg" align="middle"></span>
</p></blockquote></div>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../graphs/elliptic_integral_d__80_bit_long_double.svg" align="middle"></span>
</p></blockquote></div>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../graphs/elliptic_integral_d____float128.svg" align="middle"></span>
</p></blockquote></div>
<h5>
<a name="math_toolkit.ellint.ellint_d.h3"></a>
<span class="phrase"><a name="math_toolkit.ellint.ellint_d.testing"></a></span><a class="link" href="ellint_d.html#math_toolkit.ellint.ellint_d.testing">Testing</a>
</h5>
<p>
The tests use a mixture of spot test values calculated using values calculated
at <a href="http://www.wolframalpha.com/" target="_top">Wolfram Alpha</a>, and random
test data generated using MPFR at 1000-bit precision and a deliberately naive
implementation in terms of the Legendre integrals.
</p>
<h5>
<a name="math_toolkit.ellint.ellint_d.h4"></a>
<span class="phrase"><a name="math_toolkit.ellint.ellint_d.implementation"></a></span><a class="link" href="ellint_d.html#math_toolkit.ellint.ellint_d.implementation">Implementation</a>
</h5>
<p>
The implementation for D(&#966;, k) first performs argument reduction using the
relations:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="serif_italic"><span class="emphasis"><em>D(-&#966;, k) = -D(&#966;, k)</em></span></span>
</p></blockquote></div>
<p>
and
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="serif_italic"><span class="emphasis"><em>D(n&#960;+&#966;, k) = 2nD(k) + D(&#966;, k)</em></span></span>
</p></blockquote></div>
<p>
to move &#966; to the range [0, &#960;/2].
</p>
<p>
The functions are then implemented in terms of Carlson's integral R<sub>D</sub>
using
the relation:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../equations/ellint_d.svg"></span>
</p></blockquote></div>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><div class="copyright-footer">Copyright &#169; 2006-2019 Nikhar
Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
R&#229;de, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
Daryle Walker and Xiaogang Zhang<p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>
</div></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="ellint_3.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../ellint.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="jacobi_zeta.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>