math/doc/html/math_toolkit/hypergeometric/hypergeometric_refs.html
2019-10-31 17:55:35 +00:00

112 lines
6.4 KiB
HTML

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>Hypergeometric References</title>
<link rel="stylesheet" href="../../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
<link rel="home" href="../../index.html" title="Math Toolkit 2.11.0">
<link rel="up" href="../hypergeometric.html" title="Hypergeometric Functions">
<link rel="prev" href="hypergeometric_pfq.html" title="Hypergeometric pFq">
<link rel="next" href="../powers.html" title="Basic Functions">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td>
<td align="center"><a href="../../../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="hypergeometric_pfq.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../hypergeometric.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../powers.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h3 class="title">
<a name="math_toolkit.hypergeometric.hypergeometric_refs"></a><a class="link" href="hypergeometric_refs.html" title="Hypergeometric References">Hypergeometric
References</a>
</h3></div></div></div>
<div class="orderedlist"><ol class="orderedlist" type="1">
<li class="listitem">
Beals, Richard, and Roderick Wong. <span class="emphasis"><em>Special functions: a graduate
text.</em></span> Vol. 126. Cambridge University Press, 2010.
</li>
<li class="listitem">
Pearson, John W., Sheehan Olver, and Mason A. Porter. <span class="emphasis"><em>Numerical
methods for the computation of the confluent and Gauss hypergeometric
functions.</em></span> Numerical Algorithms 74.3 (2017): 821-866.
</li>
<li class="listitem">
Luke, Yudell L. <span class="emphasis"><em>Algorithms for Rational Approximations for
a Confluent Hypergeometric Function II.</em></span> MISSOURI UNIV KANSAS
CITY DEPT OF MATHEMATICS, 1976.
</li>
<li class="listitem">
Derezinski, Jan. <span class="emphasis"><em>Hypergeometric type functions and their symmetries.</em></span>
Annales Henri Poincar&#233;. Vol. 15. No. 8. Springer Basel, 2014.
</li>
<li class="listitem">
Keith E. Muller <span class="emphasis"><em>Computing the confluent hypergeometric function,
M(a, b, x)</em></span>. Numer. Math. 90: 179-196 (2001).
</li>
<li class="listitem">
Carlo Morosi, Livio Pizzocchero. <span class="emphasis"><em>On the expansion of the Kummer
function in terms of incomplete Gamma functions.</em></span> Arch. Inequal.
Appl. 2 (2004), 49-72.
</li>
<li class="listitem">
Jose Luis Lopez, Nico M. Temme. <span class="emphasis"><em>Asymptotics and numerics of
polynomials used in Tricomi and Buchholz expansions of Kummer functions</em></span>.
Numerische Mathematik, August 2010.
</li>
<li class="listitem">
Javier Sesma. <span class="emphasis"><em>The Temme's sum rule for confluent hypergeometric
functions revisited</em></span>. Journal of Computational and Applied
Mathematics 163 (2004) 429-431.
</li>
<li class="listitem">
Javier Segura, Nico M. Temme. <span class="emphasis"><em>Numerically satisfactory solutions
of Kummer recurrence relations</em></span>. Numer. Math. (2008) 111:109-119.
</li>
<li class="listitem">
Alfredo Deano, Javier Segura. <span class="emphasis"><em>Transitory Minimal Solutions
Of Hypergeometric Recursions And Pseudoconvergence of Associated Continued
Fractions</em></span>. Mathematics of Computation, Volume 76, Number 258,
April 2007.
</li>
<li class="listitem">
W. Gautschi. <span class="emphasis"><em>Computational aspects of three-term recurrence
relations</em></span>. SIAM Review 9, no.1 (1967) 24-82.
</li>
<li class="listitem">
W. Gautschi. <span class="emphasis"><em>Anomalous convergence of a continued fraction
for ratios of Kummer functions</em></span>. Math. Comput., 31, no.140
(1977) 994-999.
</li>
<li class="listitem">
British Association for the Advancement of Science: <span class="emphasis"><em>Bessel
functions, Part II, Mathematical Tables vol. X</em></span>. Cambridge
(1952).
</li>
</ol></div>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><div class="copyright-footer">Copyright &#169; 2006-2019 Nikhar
Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
R&#229;de, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
Daryle Walker and Xiaogang Zhang<p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>
</div></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="hypergeometric_pfq.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../hypergeometric.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../powers.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>