math/doc/html/math_toolkit/internals/cf.html
2019-10-31 17:55:35 +00:00

388 lines
39 KiB
HTML

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>Continued Fraction Evaluation</title>
<link rel="stylesheet" href="../../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
<link rel="home" href="../../index.html" title="Math Toolkit 2.11.0">
<link rel="up" href="../internals.html" title="Internal tools">
<link rel="prev" href="series_evaluation.html" title="Series Evaluation">
<link rel="next" href="recurrence.html" title="Tools For 3-Term Recurrence Relations">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td>
<td align="center"><a href="../../../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="series_evaluation.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../internals.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="recurrence.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h3 class="title">
<a name="math_toolkit.internals.cf"></a><a class="link" href="cf.html" title="Continued Fraction Evaluation">Continued Fraction Evaluation</a>
</h3></div></div></div>
<h5>
<a name="math_toolkit.internals.cf.h0"></a>
<span class="phrase"><a name="math_toolkit.internals.cf.synopsis"></a></span><a class="link" href="cf.html#math_toolkit.internals.cf.synopsis">Synopsis</a>
</h5>
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">tools</span><span class="special">/</span><span class="identifier">fraction</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
</pre>
<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">tools</span><span class="special">{</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">Gen</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">U</span><span class="special">&gt;</span>
<span class="keyword">typename</span> <span class="identifier">detail</span><span class="special">::</span><span class="identifier">fraction_traits</span><span class="special">&lt;</span><span class="identifier">Gen</span><span class="special">&gt;::</span><span class="identifier">result_type</span>
<span class="identifier">continued_fraction_b</span><span class="special">(</span><span class="identifier">Gen</span><span class="special">&amp;</span> <span class="identifier">g</span><span class="special">,</span> <span class="keyword">const</span> <span class="identifier">U</span><span class="special">&amp;</span> <span class="identifier">tolerance</span><span class="special">,</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">uintmax_t</span><span class="special">&amp;</span> <span class="identifier">max_terms</span><span class="special">)</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">Gen</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">U</span><span class="special">&gt;</span>
<span class="keyword">typename</span> <span class="identifier">detail</span><span class="special">::</span><span class="identifier">fraction_traits</span><span class="special">&lt;</span><span class="identifier">Gen</span><span class="special">&gt;::</span><span class="identifier">result_type</span>
<span class="identifier">continued_fraction_b</span><span class="special">(</span><span class="identifier">Gen</span><span class="special">&amp;</span> <span class="identifier">g</span><span class="special">,</span> <span class="keyword">const</span> <span class="identifier">U</span><span class="special">&amp;</span> <span class="identifier">tolerance</span><span class="special">)</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">Gen</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">U</span><span class="special">&gt;</span>
<span class="keyword">typename</span> <span class="identifier">detail</span><span class="special">::</span><span class="identifier">fraction_traits</span><span class="special">&lt;</span><span class="identifier">Gen</span><span class="special">&gt;::</span><span class="identifier">result_type</span>
<span class="identifier">continued_fraction_a</span><span class="special">(</span><span class="identifier">Gen</span><span class="special">&amp;</span> <span class="identifier">g</span><span class="special">,</span> <span class="keyword">const</span> <span class="identifier">U</span><span class="special">&amp;</span> <span class="identifier">tolerance</span><span class="special">,</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">uintmax_t</span><span class="special">&amp;</span> <span class="identifier">max_terms</span><span class="special">)</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">Gen</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">U</span><span class="special">&gt;</span>
<span class="keyword">typename</span> <span class="identifier">detail</span><span class="special">::</span><span class="identifier">fraction_traits</span><span class="special">&lt;</span><span class="identifier">Gen</span><span class="special">&gt;::</span><span class="identifier">result_type</span>
<span class="identifier">continued_fraction_a</span><span class="special">(</span><span class="identifier">Gen</span><span class="special">&amp;</span> <span class="identifier">g</span><span class="special">,</span> <span class="keyword">const</span> <span class="identifier">U</span><span class="special">&amp;</span> <span class="identifier">tolerance</span><span class="special">)</span>
<span class="comment">//</span>
<span class="comment">// These interfaces are present for legacy reasons, and are now deprecated:</span>
<span class="comment">//</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">Gen</span><span class="special">&gt;</span>
<span class="keyword">typename</span> <span class="identifier">detail</span><span class="special">::</span><span class="identifier">fraction_traits</span><span class="special">&lt;</span><span class="identifier">Gen</span><span class="special">&gt;::</span><span class="identifier">result_type</span>
<span class="identifier">continued_fraction_b</span><span class="special">(</span><span class="identifier">Gen</span><span class="special">&amp;</span> <span class="identifier">g</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">bits</span><span class="special">);</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">Gen</span><span class="special">&gt;</span>
<span class="keyword">typename</span> <span class="identifier">detail</span><span class="special">::</span><span class="identifier">fraction_traits</span><span class="special">&lt;</span><span class="identifier">Gen</span><span class="special">&gt;::</span><span class="identifier">result_type</span>
<span class="identifier">continued_fraction_b</span><span class="special">(</span><span class="identifier">Gen</span><span class="special">&amp;</span> <span class="identifier">g</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">bits</span><span class="special">,</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">uintmax_t</span><span class="special">&amp;</span> <span class="identifier">max_terms</span><span class="special">);</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">Gen</span><span class="special">&gt;</span>
<span class="keyword">typename</span> <span class="identifier">detail</span><span class="special">::</span><span class="identifier">fraction_traits</span><span class="special">&lt;</span><span class="identifier">Gen</span><span class="special">&gt;::</span><span class="identifier">result_type</span>
<span class="identifier">continued_fraction_a</span><span class="special">(</span><span class="identifier">Gen</span><span class="special">&amp;</span> <span class="identifier">g</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">bits</span><span class="special">);</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">Gen</span><span class="special">&gt;</span>
<span class="keyword">typename</span> <span class="identifier">detail</span><span class="special">::</span><span class="identifier">fraction_traits</span><span class="special">&lt;</span><span class="identifier">Gen</span><span class="special">&gt;::</span><span class="identifier">result_type</span>
<span class="identifier">continued_fraction_a</span><span class="special">(</span><span class="identifier">Gen</span><span class="special">&amp;</span> <span class="identifier">g</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">bits</span><span class="special">,</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">uintmax_t</span><span class="special">&amp;</span> <span class="identifier">max_terms</span><span class="special">);</span>
<span class="special">}}}</span> <span class="comment">// namespaces</span>
</pre>
<h5>
<a name="math_toolkit.internals.cf.h1"></a>
<span class="phrase"><a name="math_toolkit.internals.cf.description"></a></span><a class="link" href="cf.html#math_toolkit.internals.cf.description">Description</a>
</h5>
<p>
<a href="http://en.wikipedia.org/wiki/Continued_fraction" target="_top">Continued fractions
are a common method of approximation. </a> These functions all evaluate
the continued fraction described by the <span class="emphasis"><em>generator</em></span> type
argument. The functions with an "_a" suffix evaluate the fraction:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../equations/fraction2.svg"></span>
</p></blockquote></div>
<p>
and those with a "_b" suffix evaluate the fraction:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../equations/fraction1.svg"></span>
</p></blockquote></div>
<p>
This latter form is somewhat more natural in that it corresponds with the
usual definition of a continued fraction, but note that the first <span class="emphasis"><em>a</em></span>
value returned by the generator is discarded. Further, often the first <span class="emphasis"><em>a</em></span>
and <span class="emphasis"><em>b</em></span> values in a continued fraction have different
defining equations to the remaining terms, which may make the "_a"
suffixed form more appropriate.
</p>
<p>
The generator type should be a function object which supports the following
operations:
</p>
<div class="informaltable"><table class="table">
<colgroup>
<col>
<col>
</colgroup>
<thead><tr>
<th>
<p>
Expression
</p>
</th>
<th>
<p>
Description
</p>
</th>
</tr></thead>
<tbody>
<tr>
<td>
<p>
Gen::result_type
</p>
</td>
<td>
<p>
The type that is the result of invoking operator(). This can be
either an arithmetic or complex type, or a std::pair&lt;&gt; of
arithmetic or complex types.
</p>
</td>
</tr>
<tr>
<td>
<p>
g()
</p>
</td>
<td>
<p>
Returns an object of type Gen::result_type.
</p>
<p>
Each time this operator is called then the next pair of <span class="emphasis"><em>a</em></span>
and <span class="emphasis"><em>b</em></span> values is returned. Or, if result_type
is an arithmetic type, then the next <span class="emphasis"><em>b</em></span> value
is returned and all the <span class="emphasis"><em>a</em></span> values are assumed
to 1.
</p>
</td>
</tr>
</tbody>
</table></div>
<p>
In all the continued fraction evaluation functions the <span class="emphasis"><em>tolerance</em></span>
parameter is the precision desired in the result, evaluation of the fraction
will continue until the last term evaluated leaves the relative error in
the result less than <span class="emphasis"><em>tolerance</em></span>. The deprecated interfaces
take a number of digits precision here, internally they just convert this
to a tolerance and forward call.
</p>
<p>
If the optional <span class="emphasis"><em>max_terms</em></span> parameter is specified then
no more than <span class="emphasis"><em>max_terms</em></span> calls to the generator will be
made, and on output, <span class="emphasis"><em>max_terms</em></span> will be set to actual
number of calls made. This facility is particularly useful when profiling
a continued fraction for convergence.
</p>
<h5>
<a name="math_toolkit.internals.cf.h2"></a>
<span class="phrase"><a name="math_toolkit.internals.cf.implementation"></a></span><a class="link" href="cf.html#math_toolkit.internals.cf.implementation">Implementation</a>
</h5>
<p>
Internally these algorithms all use the modified Lentz algorithm: refer to
Numeric Recipes in C++, W. H. Press et all, chapter 5, (especially 5.2 Evaluation
of continued fractions, p 175 - 179) for more information, also Lentz, W.J.
1976, Applied Optics, vol. 15, pp. 668-671.
</p>
<h5>
<a name="math_toolkit.internals.cf.h3"></a>
<span class="phrase"><a name="math_toolkit.internals.cf.examples"></a></span><a class="link" href="cf.html#math_toolkit.internals.cf.examples">Examples</a>
</h5>
<p>
All of these examples are in <a href="../../../../example/continued_fractions.cpp" target="_top">continued_fractions.cpp</a>.
</p>
<p>
The <a href="http://en.wikipedia.org/wiki/Golden_ratio" target="_top">golden ratio phi
= 1.618033989...</a> can be computed from the simplest continued fraction
of all:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../equations/fraction3.svg"></span>
</p></blockquote></div>
<p>
We begin by defining a generator function:
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">golden_ratio_fraction</span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="identifier">T</span> <span class="identifier">result_type</span><span class="special">;</span>
<span class="identifier">result_type</span> <span class="keyword">operator</span><span class="special">()()</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="number">1</span><span class="special">;</span>
<span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
The golden ratio can then be computed to double precision using:
</p>
<pre class="programlisting"><span class="identifier">golden_ratio_fraction</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span> <span class="identifier">func</span><span class="special">;</span>
<span class="keyword">double</span> <span class="identifier">gr</span> <span class="special">=</span> <span class="identifier">continued_fraction_a</span><span class="special">(</span>
<span class="identifier">func</span><span class="special">,</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;::</span><span class="identifier">epsilon</span><span class="special">());</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"The golden ratio is: "</span> <span class="special">&lt;&lt;</span> <span class="identifier">gr</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
</pre>
<p>
It's more usual though to have to define both the <span class="emphasis"><em>a</em></span>'s
and the <span class="emphasis"><em>b</em></span>'s when evaluating special functions by continued
fractions, for example the tan function is defined by:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../equations/fraction4.svg"></span>
</p></blockquote></div>
<p>
So its generator object would look like:
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">tan_fraction</span>
<span class="special">{</span>
<span class="keyword">private</span><span class="special">:</span>
<span class="identifier">T</span> <span class="identifier">a</span><span class="special">,</span> <span class="identifier">b</span><span class="special">;</span>
<span class="keyword">public</span><span class="special">:</span>
<span class="identifier">tan_fraction</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">v</span><span class="special">)</span>
<span class="special">:</span> <span class="identifier">a</span><span class="special">(-</span><span class="identifier">v</span> <span class="special">*</span> <span class="identifier">v</span><span class="special">),</span> <span class="identifier">b</span><span class="special">(-</span><span class="number">1</span><span class="special">)</span>
<span class="special">{}</span>
<span class="keyword">typedef</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">T</span><span class="special">&gt;</span> <span class="identifier">result_type</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">operator</span><span class="special">()()</span>
<span class="special">{</span>
<span class="identifier">b</span> <span class="special">+=</span> <span class="number">2</span><span class="special">;</span>
<span class="keyword">return</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">make_pair</span><span class="special">(</span><span class="identifier">a</span><span class="special">,</span> <span class="identifier">b</span><span class="special">);</span>
<span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
Notice that if the continuant is subtracted from the <span class="emphasis"><em>b</em></span>
terms, as is the case here, then all the <span class="emphasis"><em>a</em></span> terms returned
by the generator will be negative. The tangent function can now be evaluated
using:
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
<span class="identifier">T</span> <span class="identifier">tan</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">a</span><span class="special">)</span>
<span class="special">{</span>
<span class="identifier">tan_fraction</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="identifier">fract</span><span class="special">(</span><span class="identifier">a</span><span class="special">);</span>
<span class="keyword">return</span> <span class="identifier">a</span> <span class="special">/</span> <span class="identifier">continued_fraction_b</span><span class="special">(</span><span class="identifier">fract</span><span class="special">,</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">epsilon</span><span class="special">());</span>
<span class="special">}</span>
</pre>
<p>
Notice that this time we're using the "_b" suffixed version to
evaluate the fraction: we're removing the leading <span class="emphasis"><em>a</em></span>
term during fraction evaluation as it's different from all the others.
</p>
<p>
Now we'll look at a couple of complex number examples, starting with the
exponential integral which can be calculated via:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../equations/expint_n_3.svg"></span>
</p></blockquote></div>
<p>
So our functor looks like this:
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">expint_fraction</span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">T</span><span class="special">&gt;</span> <span class="identifier">result_type</span><span class="special">;</span>
<span class="identifier">expint_fraction</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n_</span><span class="special">,</span> <span class="identifier">T</span> <span class="identifier">z_</span><span class="special">)</span> <span class="special">:</span> <span class="identifier">b</span><span class="special">(</span><span class="identifier">z_</span> <span class="special">+</span> <span class="identifier">T</span><span class="special">(</span><span class="identifier">n_</span><span class="special">)),</span> <span class="identifier">i</span><span class="special">(-</span><span class="number">1</span><span class="special">),</span> <span class="identifier">n</span><span class="special">(</span><span class="identifier">n_</span><span class="special">)</span> <span class="special">{}</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">operator</span><span class="special">()()</span>
<span class="special">{</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">T</span><span class="special">&gt;</span> <span class="identifier">result</span> <span class="special">=</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">make_pair</span><span class="special">(-</span><span class="keyword">static_cast</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;((</span><span class="identifier">i</span> <span class="special">+</span> <span class="number">1</span><span class="special">)</span> <span class="special">*</span> <span class="special">(</span><span class="identifier">n</span> <span class="special">+</span> <span class="identifier">i</span><span class="special">)),</span> <span class="identifier">b</span><span class="special">);</span>
<span class="identifier">b</span> <span class="special">+=</span> <span class="number">2</span><span class="special">;</span>
<span class="special">++</span><span class="identifier">i</span><span class="special">;</span>
<span class="keyword">return</span> <span class="identifier">result</span><span class="special">;</span>
<span class="special">}</span>
<span class="keyword">private</span><span class="special">:</span>
<span class="identifier">T</span> <span class="identifier">b</span><span class="special">;</span>
<span class="keyword">int</span> <span class="identifier">i</span><span class="special">;</span>
<span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">;</span>
<span class="special">};</span>
</pre>
<p>
We can finish the example by wrapping everything up in a function:
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
<span class="keyword">inline</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="identifier">expint_as_fraction</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">const</span><span class="special">&amp;</span> <span class="identifier">z</span><span class="special">)</span>
<span class="special">{</span>
<span class="identifier">boost</span><span class="special">::</span><span class="identifier">uintmax_t</span> <span class="identifier">max_iter</span> <span class="special">=</span> <span class="number">1000</span><span class="special">;</span>
<span class="identifier">expint_fraction</span><span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="special">&gt;</span> <span class="identifier">f</span><span class="special">(</span><span class="identifier">n</span><span class="special">,</span> <span class="identifier">z</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="identifier">result</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">tools</span><span class="special">::</span><span class="identifier">continued_fraction_b</span><span class="special">(</span>
<span class="identifier">f</span><span class="special">,</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">epsilon</span><span class="special">()),</span>
<span class="identifier">max_iter</span><span class="special">);</span>
<span class="identifier">result</span> <span class="special">=</span> <span class="identifier">exp</span><span class="special">(-</span><span class="identifier">z</span><span class="special">)</span> <span class="special">/</span> <span class="identifier">result</span><span class="special">;</span>
<span class="keyword">return</span> <span class="identifier">result</span><span class="special">;</span>
<span class="special">}</span>
</pre>
<p>
Notice how the termination condition is still expressed as a complex number,
albeit one with zero imaginary part.
</p>
<p>
Our final example will use <code class="literal">continued_fraction_a</code>, in fact
there is only one special function in our code which uses that variant, and
it's the upper incomplete gamma function (Q), which can be calculated via:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../equations/igamma9.svg"></span>
</p></blockquote></div>
<p>
In this case the first couple of terms are different from the rest, so our
fraction will start with the first "regular" a term:
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">upper_incomplete_gamma_fract</span>
<span class="special">{</span>
<span class="keyword">private</span><span class="special">:</span>
<span class="keyword">typedef</span> <span class="keyword">typename</span> <span class="identifier">T</span><span class="special">::</span><span class="identifier">value_type</span> <span class="identifier">scalar_type</span><span class="special">;</span>
<span class="identifier">T</span> <span class="identifier">z</span><span class="special">,</span> <span class="identifier">a</span><span class="special">;</span>
<span class="keyword">int</span> <span class="identifier">k</span><span class="special">;</span>
<span class="keyword">public</span><span class="special">:</span>
<span class="keyword">typedef</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">T</span><span class="special">&gt;</span> <span class="identifier">result_type</span><span class="special">;</span>
<span class="identifier">upper_incomplete_gamma_fract</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">a1</span><span class="special">,</span> <span class="identifier">T</span> <span class="identifier">z1</span><span class="special">)</span>
<span class="special">:</span> <span class="identifier">z</span><span class="special">(</span><span class="identifier">z1</span> <span class="special">-</span> <span class="identifier">a1</span> <span class="special">+</span> <span class="identifier">scalar_type</span><span class="special">(</span><span class="number">1</span><span class="special">)),</span> <span class="identifier">a</span><span class="special">(</span><span class="identifier">a1</span><span class="special">),</span> <span class="identifier">k</span><span class="special">(</span><span class="number">0</span><span class="special">)</span>
<span class="special">{</span>
<span class="special">}</span>
<span class="identifier">result_type</span> <span class="keyword">operator</span><span class="special">()()</span>
<span class="special">{</span>
<span class="special">++</span><span class="identifier">k</span><span class="special">;</span>
<span class="identifier">z</span> <span class="special">+=</span> <span class="identifier">scalar_type</span><span class="special">(</span><span class="number">2</span><span class="special">);</span>
<span class="keyword">return</span> <span class="identifier">result_type</span><span class="special">(</span><span class="identifier">scalar_type</span><span class="special">(</span><span class="identifier">k</span><span class="special">)</span> <span class="special">*</span> <span class="special">(</span><span class="identifier">a</span> <span class="special">-</span> <span class="identifier">scalar_type</span><span class="special">(</span><span class="identifier">k</span><span class="special">)),</span> <span class="identifier">z</span><span class="special">);</span>
<span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
So now we can implement Q, this time using <code class="literal">continued_fraction_a</code>:
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
<span class="keyword">inline</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="identifier">gamma_Q_as_fraction</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;&amp;</span> <span class="identifier">a</span><span class="special">,</span> <span class="keyword">const</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;&amp;</span> <span class="identifier">z</span><span class="special">)</span>
<span class="special">{</span>
<span class="identifier">upper_incomplete_gamma_fract</span><span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="special">&gt;</span> <span class="identifier">f</span><span class="special">(</span><span class="identifier">a</span><span class="special">,</span> <span class="identifier">z</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="identifier">eps</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">epsilon</span><span class="special">());</span>
<span class="keyword">return</span> <span class="identifier">pow</span><span class="special">(</span><span class="identifier">z</span><span class="special">,</span> <span class="identifier">a</span><span class="special">)</span> <span class="special">/</span> <span class="special">(</span><span class="identifier">exp</span><span class="special">(</span><span class="identifier">z</span><span class="special">)</span> <span class="special">*(</span><span class="identifier">z</span> <span class="special">-</span> <span class="identifier">a</span> <span class="special">+</span> <span class="identifier">T</span><span class="special">(</span><span class="number">1</span><span class="special">)</span> <span class="special">+</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">tools</span><span class="special">::</span><span class="identifier">continued_fraction_a</span><span class="special">(</span><span class="identifier">f</span><span class="special">,</span> <span class="identifier">eps</span><span class="special">)));</span>
<span class="special">}</span>
</pre>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><div class="copyright-footer">Copyright &#169; 2006-2019 Nikhar
Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
R&#229;de, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
Daryle Walker and Xiaogang Zhang<p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>
</div></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="series_evaluation.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../internals.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="recurrence.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>