72e469da0a
[CI SKIP]
286 lines
18 KiB
HTML
286 lines
18 KiB
HTML
<html>
|
|
<head>
|
|
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
|
|
<title>Minimax Approximations and the Remez Algorithm</title>
|
|
<link rel="stylesheet" href="../../math.css" type="text/css">
|
|
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
|
|
<link rel="home" href="../../index.html" title="Math Toolkit 2.11.0">
|
|
<link rel="up" href="../internals.html" title="Internal tools">
|
|
<link rel="prev" href="tuples.html" title="Tuples">
|
|
<link rel="next" href="error_test.html" title="Relative Error and Testing">
|
|
</head>
|
|
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
|
|
<table cellpadding="2" width="100%"><tr>
|
|
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td>
|
|
<td align="center"><a href="../../../../../../index.html">Home</a></td>
|
|
<td align="center"><a href="../../../../../../libs/libraries.htm">Libraries</a></td>
|
|
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
|
|
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
|
|
<td align="center"><a href="../../../../../../more/index.htm">More</a></td>
|
|
</tr></table>
|
|
<hr>
|
|
<div class="spirit-nav">
|
|
<a accesskey="p" href="tuples.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../internals.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="error_test.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
|
|
</div>
|
|
<div class="section">
|
|
<div class="titlepage"><div><div><h3 class="title">
|
|
<a name="math_toolkit.internals.minimax"></a><a class="link" href="minimax.html" title="Minimax Approximations and the Remez Algorithm">Minimax Approximations
|
|
and the Remez Algorithm</a>
|
|
</h3></div></div></div>
|
|
<p>
|
|
The directory <code class="computeroutput"><span class="identifier">libs</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">minimax</span></code>
|
|
contains an interactive command-line driven program for the generation of
|
|
minimax approximations using the Remez algorithm. Both polynomial and rational
|
|
approximations are supported, although the latter are tricky to converge:
|
|
it is not uncommon for convergence of rational forms to fail. No such limitations
|
|
are present for polynomial approximations which should always converge smoothly.
|
|
</p>
|
|
<p>
|
|
It's worth stressing that developing rational approximations to functions
|
|
is often not an easy task, and one to which many books have been devoted.
|
|
To use this tool, you will need to have a reasonable grasp of what the Remez
|
|
algorithm is, and the general form of the approximation you want to achieve.
|
|
</p>
|
|
<p>
|
|
Unless you already familar with the Remez method, you should first read the
|
|
<a class="link" href="../remez.html" title="The Remez Method">brief background article explaining the
|
|
principles behind the Remez algorithm</a>.
|
|
</p>
|
|
<p>
|
|
The program consists of two parts:
|
|
</p>
|
|
<div class="variablelist">
|
|
<p class="title"><b></b></p>
|
|
<dl class="variablelist">
|
|
<dt><span class="term">main.cpp</span></dt>
|
|
<dd><p>
|
|
Contains the command line parser, and all the calls to the Remez code.
|
|
</p></dd>
|
|
<dt><span class="term">f.cpp</span></dt>
|
|
<dd><p>
|
|
Contains the function to approximate.
|
|
</p></dd>
|
|
</dl>
|
|
</div>
|
|
<p>
|
|
Therefore to use this tool, you must modify f.cpp to return the function
|
|
to approximate. The tools supports multiple function approximations within
|
|
the same compiled program: each as a separate variant:
|
|
</p>
|
|
<pre class="programlisting"><span class="identifier">NTL</span><span class="special">::</span><span class="identifier">RR</span> <span class="identifier">f</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">NTL</span><span class="special">::</span><span class="identifier">RR</span><span class="special">&</span> <span class="identifier">x</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">variant</span><span class="special">);</span>
|
|
</pre>
|
|
<p>
|
|
Returns the value of the function <span class="emphasis"><em>variant</em></span> at point
|
|
<span class="emphasis"><em>x</em></span>. So if you wish you can just add the function to approximate
|
|
as a new variant after the existing examples.
|
|
</p>
|
|
<p>
|
|
In addition to those two files, the program needs to be linked to a <a class="link" href="../high_precision/use_ntl.html" title="Using NTL Library">patched NTL library to compile</a>.
|
|
</p>
|
|
<p>
|
|
Note that the function <span class="emphasis"><em>f</em></span> must return the rational part
|
|
of the approximation: for example if you are approximating a function <span class="emphasis"><em>f(x)</em></span>
|
|
then it is quite common to use:
|
|
</p>
|
|
<div class="blockquote"><blockquote class="blockquote"><p>
|
|
<span class="serif_italic">f(x) = g(x)(Y + R(x))</span>
|
|
</p></blockquote></div>
|
|
<p>
|
|
where <span class="emphasis"><em>g(x)</em></span> is the dominant part of <span class="emphasis"><em>f(x)</em></span>,
|
|
<span class="emphasis"><em>Y</em></span> is some constant, and <span class="emphasis"><em>R(x)</em></span> is
|
|
the rational approximation part, usually optimised for a low absolute error
|
|
compared to |Y|.
|
|
</p>
|
|
<p>
|
|
In this case you would define <span class="emphasis"><em>f</em></span> to return <span class="serif-italic">f(x)/g(x)</span>
|
|
and then set the y-offset of the approximation to <span class="emphasis"><em>Y</em></span>
|
|
(see command line options below).
|
|
</p>
|
|
<p>
|
|
Many other forms are possible, but in all cases the objective is to split
|
|
<span class="emphasis"><em>f(x)</em></span> into a dominant part that you can evaluate easily
|
|
using standard math functions, and a smooth and slowly changing rational
|
|
approximation part. Refer to your favourite textbook for more examples.
|
|
</p>
|
|
<p>
|
|
Command line options for the program are as follows:
|
|
</p>
|
|
<div class="variablelist">
|
|
<p class="title"><b></b></p>
|
|
<dl class="variablelist">
|
|
<dt><span class="term">variant N</span></dt>
|
|
<dd><p>
|
|
Sets the current function variant to N. This allows multiple functions
|
|
that are to be approximated to be compiled into the same executable.
|
|
Defaults to 0.
|
|
</p></dd>
|
|
<dt><span class="term">range a b</span></dt>
|
|
<dd><p>
|
|
Sets the domain for the approximation to the range [a,b], defaults
|
|
to [0,1].
|
|
</p></dd>
|
|
<dt><span class="term">relative</span></dt>
|
|
<dd><p>
|
|
Sets the Remez code to optimise for relative error. This is the default
|
|
at program startup. Note that relative error can only be used if f(x)
|
|
has no roots over the range being optimised.
|
|
</p></dd>
|
|
<dt><span class="term">absolute</span></dt>
|
|
<dd><p>
|
|
Sets the Remez code to optimise for absolute error.
|
|
</p></dd>
|
|
<dt><span class="term">pin [true|false]</span></dt>
|
|
<dd><p>
|
|
"Pins" the code so that the rational approximation passes
|
|
through the origin. Obviously only set this to <span class="emphasis"><em>true</em></span>
|
|
if R(0) must be zero. This is typically used when trying to preserve
|
|
a root at [0,0] while also optimising for relative error.
|
|
</p></dd>
|
|
<dt><span class="term">order N D</span></dt>
|
|
<dd><p>
|
|
Sets the order of the approximation to <span class="emphasis"><em>N</em></span> in the
|
|
numerator and <span class="emphasis"><em>D</em></span> in the denominator. If <span class="emphasis"><em>D</em></span>
|
|
is zero then the result will be a polynomial approximation. There will
|
|
be N+D+2 coefficients in total, the first coefficient of the numerator
|
|
is zero if <span class="emphasis"><em>pin</em></span> was set to true, and the first
|
|
coefficient of the denominator is always one.
|
|
</p></dd>
|
|
<dt><span class="term">working-precision N</span></dt>
|
|
<dd><p>
|
|
Sets the working precision of NTL::RR to <span class="emphasis"><em>N</em></span> binary
|
|
digits. Defaults to 250.
|
|
</p></dd>
|
|
<dt><span class="term">target-precision N</span></dt>
|
|
<dd><p>
|
|
Sets the precision of printed output to <span class="emphasis"><em>N</em></span> binary
|
|
digits: set to the same number of digits as the type that will be used
|
|
to evaluate the approximation. Defaults to 53 (for double precision).
|
|
</p></dd>
|
|
<dt><span class="term">skew val</span></dt>
|
|
<dd><p>
|
|
"Skews" the initial interpolated control points towards one
|
|
end or the other of the range. Positive values skew the initial control
|
|
points towards the left hand side of the range, and negative values
|
|
towards the right hand side. If an approximation won't converge (a
|
|
common situation) try adjusting the skew parameter until the first
|
|
step yields the smallest possible error. <span class="emphasis"><em>val</em></span> should
|
|
be in the range [-100,+100], the default is zero.
|
|
</p></dd>
|
|
<dt><span class="term">brake val</span></dt>
|
|
<dd><p>
|
|
Sets a brake on each step so that the change in the control points
|
|
is braked by <span class="emphasis"><em>val%</em></span>. Defaults to 50, try a higher
|
|
value if an approximation won't converge, or a lower value to get speedier
|
|
convergence.
|
|
</p></dd>
|
|
<dt><span class="term">x-offset val</span></dt>
|
|
<dd><p>
|
|
Sets the x-offset to <span class="emphasis"><em>val</em></span>: the approximation will
|
|
be generated for <code class="computeroutput"><span class="identifier">f</span><span class="special">(</span><span class="identifier">S</span> <span class="special">*</span> <span class="special">(</span><span class="identifier">x</span> <span class="special">+</span> <span class="identifier">X</span><span class="special">))</span> <span class="special">+</span> <span class="identifier">Y</span></code>
|
|
where <span class="emphasis"><em>X</em></span> is the x-offset, <span class="emphasis"><em>S</em></span>
|
|
is the x-scale and <span class="emphasis"><em>Y</em></span> is the y-offset. Defaults
|
|
to zero. To avoid rounding errors, take care to specify a value that
|
|
can be exactly represented as a floating point number.
|
|
</p></dd>
|
|
<dt><span class="term">x-scale val</span></dt>
|
|
<dd><p>
|
|
Sets the x-scale to <span class="emphasis"><em>val</em></span>: the approximation will
|
|
be generated for <code class="computeroutput"><span class="identifier">f</span><span class="special">(</span><span class="identifier">S</span> <span class="special">*</span> <span class="special">(</span><span class="identifier">x</span> <span class="special">+</span> <span class="identifier">X</span><span class="special">))</span> <span class="special">+</span> <span class="identifier">Y</span></code>
|
|
where <span class="emphasis"><em>S</em></span> is the x-scale, <span class="emphasis"><em>X</em></span>
|
|
is the x-offset and <span class="emphasis"><em>Y</em></span> is the y-offset. Defaults
|
|
to one. To avoid rounding errors, take care to specify a value that
|
|
can be exactly represented as a floating point number.
|
|
</p></dd>
|
|
<dt><span class="term">y-offset val</span></dt>
|
|
<dd><p>
|
|
Sets the y-offset to <span class="emphasis"><em>val</em></span>: the approximation will
|
|
be generated for <code class="computeroutput"><span class="identifier">f</span><span class="special">(</span><span class="identifier">S</span> <span class="special">*</span> <span class="special">(</span><span class="identifier">x</span> <span class="special">+</span> <span class="identifier">X</span><span class="special">))</span> <span class="special">+</span> <span class="identifier">Y</span></code>
|
|
where <span class="emphasis"><em>X</em></span> is the x-offset, <span class="emphasis"><em>S</em></span>
|
|
is the x-scale and <span class="emphasis"><em>Y</em></span> is the y-offset. Defaults
|
|
to zero. To avoid rounding errors, take care to specify a value that
|
|
can be exactly represented as a floating point number.
|
|
</p></dd>
|
|
<dt><span class="term">y-offset auto</span></dt>
|
|
<dd><p>
|
|
Sets the y-offset to the average value of f(x) evaluated at the two
|
|
endpoints of the range plus the midpoint of the range. The calculated
|
|
value is deliberately truncated to <span class="emphasis"><em>float</em></span> precision
|
|
(and should be stored as a <span class="emphasis"><em>float</em></span> in your code).
|
|
The approximation will be generated for <code class="computeroutput"><span class="identifier">f</span><span class="special">(</span><span class="identifier">x</span> <span class="special">+</span> <span class="identifier">X</span><span class="special">)</span> <span class="special">+</span> <span class="identifier">Y</span></code> where <span class="emphasis"><em>X</em></span> is
|
|
the x-offset and <span class="emphasis"><em>Y</em></span> is the y-offset. Defaults to
|
|
zero.
|
|
</p></dd>
|
|
<dt><span class="term">graph N</span></dt>
|
|
<dd><p>
|
|
Prints N evaluations of f(x) at evenly spaced points over the range
|
|
being optimised. If unspecified then <span class="emphasis"><em>N</em></span> defaults
|
|
to 3. Use to check that f(x) is indeed smooth over the range of interest.
|
|
</p></dd>
|
|
<dt><span class="term">step N</span></dt>
|
|
<dd><p>
|
|
Performs <span class="emphasis"><em>N</em></span> steps, or one step if <span class="emphasis"><em>N</em></span>
|
|
is unspecified. After each step prints: the peek error at the extrema
|
|
of the error function of the approximation, the theoretical error term
|
|
solved for on the last step, and the maximum relative change in the
|
|
location of the Chebyshev control points. The approximation is converged
|
|
on the minimax solution when the two error terms are (approximately)
|
|
equal, and the change in the control points has decreased to a suitably
|
|
small value.
|
|
</p></dd>
|
|
<dt><span class="term">test [float|double|long]</span></dt>
|
|
<dd><p>
|
|
Tests the current approximation at float, double, or long double precision.
|
|
Useful to check for rounding errors in evaluating the approximation
|
|
at fixed precision. Tests are conducted at the extrema of the error
|
|
function of the approximation, and at the zeros of the error function.
|
|
</p></dd>
|
|
<dt><span class="term">test [float|double|long] N</span></dt>
|
|
<dd><p>
|
|
Tests the current approximation at float, double, or long double precision.
|
|
Useful to check for rounding errors in evaluating the approximation
|
|
at fixed precision. Tests are conducted at N evenly spaced points over
|
|
the range of the approximation. If none of [float|double|long] are
|
|
specified then tests using NTL::RR, this can be used to obtain the
|
|
error function of the approximation.
|
|
</p></dd>
|
|
<dt><span class="term">rescale a b</span></dt>
|
|
<dd><p>
|
|
Takes the current Chebeshev control points, and rescales them over
|
|
a new interval [a,b]. Sometimes this can be used to obtain starting
|
|
control points for an approximation that can not otherwise be converged.
|
|
</p></dd>
|
|
<dt><span class="term">rotate</span></dt>
|
|
<dd><p>
|
|
Moves one term from the numerator to the denominator, but keeps the
|
|
Chebyshev control points the same. Sometimes this can be used to obtain
|
|
starting control points for an approximation that can not otherwise
|
|
be converged.
|
|
</p></dd>
|
|
<dt><span class="term">info</span></dt>
|
|
<dd><p>
|
|
Prints out the current approximation: the location of the zeros of
|
|
the error function, the location of the Chebyshev control points, the
|
|
x and y offsets, and of course the coefficients of the polynomials.
|
|
</p></dd>
|
|
</dl>
|
|
</div>
|
|
</div>
|
|
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
|
|
<td align="left"></td>
|
|
<td align="right"><div class="copyright-footer">Copyright © 2006-2019 Nikhar
|
|
Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
|
|
Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
|
|
Råde, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
|
|
Daryle Walker and Xiaogang Zhang<p>
|
|
Distributed under the Boost Software License, Version 1.0. (See accompanying
|
|
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
|
|
</p>
|
|
</div></td>
|
|
</tr></table>
|
|
<hr>
|
|
<div class="spirit-nav">
|
|
<a accesskey="p" href="tuples.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../internals.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="error_test.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
|
|
</div>
|
|
</body>
|
|
</html>
|