math/doc/html/math_toolkit/roots_noderiv/bracket_solve.html
2019-10-31 17:55:35 +00:00

188 lines
13 KiB
HTML

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>Bracket and Solve Root</title>
<link rel="stylesheet" href="../../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
<link rel="home" href="../../index.html" title="Math Toolkit 2.11.0">
<link rel="up" href="../roots_noderiv.html" title="Root Finding Without Derivatives">
<link rel="prev" href="bisect.html" title="Bisection">
<link rel="next" href="TOMS748.html" title="Algorithm TOMS 748: Alefeld, Potra and Shi: Enclosing zeros of continuous functions">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td>
<td align="center"><a href="../../../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="bisect.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../roots_noderiv.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="TOMS748.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h3 class="title">
<a name="math_toolkit.roots_noderiv.bracket_solve"></a><a class="link" href="bracket_solve.html" title="Bracket and Solve Root">Bracket and
Solve Root</a>
</h3></div></div></div>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">F</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">Tol</span><span class="special">&gt;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">T</span><span class="special">&gt;</span>
<span class="identifier">bracket_and_solve_root</span><span class="special">(</span>
<span class="identifier">F</span> <span class="identifier">f</span><span class="special">,</span>
<span class="keyword">const</span> <span class="identifier">T</span><span class="special">&amp;</span> <span class="identifier">guess</span><span class="special">,</span>
<span class="keyword">const</span> <span class="identifier">T</span><span class="special">&amp;</span> <span class="identifier">factor</span><span class="special">,</span>
<span class="keyword">bool</span> <span class="identifier">rising</span><span class="special">,</span>
<span class="identifier">Tol</span> <span class="identifier">tol</span><span class="special">,</span>
<span class="identifier">boost</span><span class="special">::</span><span class="identifier">uintmax_t</span><span class="special">&amp;</span> <span class="identifier">max_iter</span><span class="special">);</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">F</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">Tol</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter&#160;20.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">T</span><span class="special">&gt;</span>
<span class="identifier">bracket_and_solve_root</span><span class="special">(</span>
<span class="identifier">F</span> <span class="identifier">f</span><span class="special">,</span>
<span class="keyword">const</span> <span class="identifier">T</span><span class="special">&amp;</span> <span class="identifier">guess</span><span class="special">,</span>
<span class="keyword">const</span> <span class="identifier">T</span><span class="special">&amp;</span> <span class="identifier">factor</span><span class="special">,</span>
<span class="keyword">bool</span> <span class="identifier">rising</span><span class="special">,</span>
<span class="identifier">Tol</span> <span class="identifier">tol</span><span class="special">,</span>
<span class="identifier">boost</span><span class="special">::</span><span class="identifier">uintmax_t</span><span class="special">&amp;</span> <span class="identifier">max_iter</span><span class="special">,</span>
<span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter&#160;20.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
</pre>
<p>
<code class="computeroutput"><span class="identifier">bracket_and_solve_root</span></code> is
a convenience function that calls <a class="link" href="TOMS748.html" title="Algorithm TOMS 748: Alefeld, Potra and Shi: Enclosing zeros of continuous functions">TOMS
748 algorithm</a> internally to find the root of <span class="emphasis"><em>f(x)</em></span>.
It is generally much easier to use this function rather than <a class="link" href="TOMS748.html" title="Algorithm TOMS 748: Alefeld, Potra and Shi: Enclosing zeros of continuous functions">TOMS
748 algorithm</a>, since it does the hard work of bracketing the root
for you. It's bracketing routines are quite robust and will usually be more
foolproof than home-grown routines, unless the function can be analysed to
yield tight brackets.
</p>
<p>
Note that this routine can only be used when:
</p>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem">
<span class="emphasis"><em>f(x)</em></span> is monotonic in the half of the real axis containing
<span class="emphasis"><em>guess</em></span>.
</li>
<li class="listitem">
The value of the inital guess must have the same sign as the root: the
function will <span class="emphasis"><em>never cross the origin</em></span> when searching
for the root.
</li>
<li class="listitem">
The location of the root should be known at least approximately, if the
location of the root differs by many orders of magnitude from <span class="emphasis"><em>guess</em></span>
then many iterations will be needed to bracket the root in spite of the
special heuristics used to guard against this very situation. A typical
example would be setting the initial guess to 0.1, when the root is at
1e-300.
</li>
</ul></div>
<p>
The <code class="computeroutput"><span class="identifier">bracket_and_solve_root</span></code>
parameters are:
</p>
<div class="variablelist">
<p class="title"><b></b></p>
<dl class="variablelist">
<dt><span class="term">f</span></dt>
<dd><p>
A unary functor (or C++ lambda) that is the function whose root is
to be solved. <span class="emphasis"><em>f(x)</em></span> must be uniformly increasing
or decreasing on <span class="emphasis"><em>x</em></span>.
</p></dd>
<dt><span class="term">guess</span></dt>
<dd><p>
An initial approximation to the root.
</p></dd>
<dt><span class="term">factor</span></dt>
<dd><p>
A scaling factor that is used to bracket the root: the value <span class="emphasis"><em>guess</em></span>
is multiplied (or divided as appropriate) by <span class="emphasis"><em>factor</em></span>
until two values are found that bracket the root. A value such as 2
is a typical choice for <span class="emphasis"><em>factor</em></span>. In addition <span class="emphasis"><em>factor</em></span>
will be multiplied by 2 every 32 iterations: this is to guard against
a really very bad initial guess, typically these occur when it's known
the result is very large or small, but not the exact order of magnitude.
</p></dd>
<dt><span class="term">rising</span></dt>
<dd><p>
Set to <span class="emphasis"><em>true</em></span> if <span class="emphasis"><em>f(x)</em></span> is rising
on <span class="emphasis"><em>x</em></span> and <span class="emphasis"><em>false</em></span> if <span class="emphasis"><em>f(x)</em></span>
is falling on <span class="emphasis"><em>x</em></span>. This value is used along with
the result of <span class="emphasis"><em>f(guess)</em></span> to determine if <span class="emphasis"><em>guess</em></span>
is above or below the root.
</p></dd>
<dt><span class="term">tol</span></dt>
<dd><p>
A binary functor (or C++ lambda) that determines the termination condition
for the search for the root. <span class="emphasis"><em>tol</em></span> is passed the
current brackets at each step, when it returns true then the current
brackets are returned as the pair result. See also <a class="link" href="root_termination.html" title="Termination Condition Functors">predefined
termination functors</a>.
</p></dd>
<dt><span class="term">max_iter</span></dt>
<dd><p>
The maximum number of function invocations to perform in the search
for the root. On exit is set to the actual number of invocations performed.
</p></dd>
</dl>
</div>
<p>
The final <a class="link" href="../../policy.html" title="Chapter&#160;20.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
be used to control the behaviour of the function: how it handles errors,
what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Chapter&#160;20.&#160;Policies: Controlling Precision, Error Handling etc">policy
documentation for more details</a>.
</p>
<p>
<span class="bold"><strong>Returns</strong></span>: a pair of values <span class="emphasis"><em>r</em></span>
that bracket the root so that:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
f(r.first) * f(r.second) &lt;= 0
</p></blockquote></div>
<p>
and either
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
tol(r.first, r.second) == true
</p></blockquote></div>
<p>
or
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
max_iter &gt;= m
</p></blockquote></div>
<p>
where <span class="emphasis"><em>m</em></span> is the initial value of <span class="emphasis"><em>max_iter</em></span>
passed to the function.
</p>
<p>
In other words, it's up to the caller to verify whether termination occurred
as a result of exceeding <span class="emphasis"><em>max_iter</em></span> function invocations
(easily done by checking the value of <span class="emphasis"><em>max_iter</em></span> when
the function returns), rather than because the termination condition <span class="emphasis"><em>tol</em></span>
was satisfied.
</p>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><div class="copyright-footer">Copyright &#169; 2006-2019 Nikhar
Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
R&#229;de, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
Daryle Walker and Xiaogang Zhang<p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>
</div></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="bisect.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../roots_noderiv.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="TOMS748.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>