72e469da0a
[CI SKIP]
486 lines
25 KiB
HTML
486 lines
25 KiB
HTML
<html>
|
|
<head>
|
|
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
|
|
<title>Digamma</title>
|
|
<link rel="stylesheet" href="../../math.css" type="text/css">
|
|
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
|
|
<link rel="home" href="../../index.html" title="Math Toolkit 2.11.0">
|
|
<link rel="up" href="../sf_gamma.html" title="Gamma Functions">
|
|
<link rel="prev" href="lgamma.html" title="Log Gamma">
|
|
<link rel="next" href="trigamma.html" title="Trigamma">
|
|
</head>
|
|
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
|
|
<table cellpadding="2" width="100%"><tr>
|
|
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td>
|
|
<td align="center"><a href="../../../../../../index.html">Home</a></td>
|
|
<td align="center"><a href="../../../../../../libs/libraries.htm">Libraries</a></td>
|
|
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
|
|
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
|
|
<td align="center"><a href="../../../../../../more/index.htm">More</a></td>
|
|
</tr></table>
|
|
<hr>
|
|
<div class="spirit-nav">
|
|
<a accesskey="p" href="lgamma.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../sf_gamma.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="trigamma.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
|
|
</div>
|
|
<div class="section">
|
|
<div class="titlepage"><div><div><h3 class="title">
|
|
<a name="math_toolkit.sf_gamma.digamma"></a><a class="link" href="digamma.html" title="Digamma">Digamma</a>
|
|
</h3></div></div></div>
|
|
<h5>
|
|
<a name="math_toolkit.sf_gamma.digamma.h0"></a>
|
|
<span class="phrase"><a name="math_toolkit.sf_gamma.digamma.synopsis"></a></span><a class="link" href="digamma.html#math_toolkit.sf_gamma.digamma.synopsis">Synopsis</a>
|
|
</h5>
|
|
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">special_functions</span><span class="special">/</span><span class="identifier">digamma</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
|
|
</pre>
|
|
<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span><span class="special">{</span>
|
|
|
|
<span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">></span>
|
|
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">digamma</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">);</span>
|
|
|
|
<span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 20. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">></span>
|
|
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">digamma</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 20. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&);</span>
|
|
|
|
<span class="special">}}</span> <span class="comment">// namespaces</span>
|
|
</pre>
|
|
<h5>
|
|
<a name="math_toolkit.sf_gamma.digamma.h1"></a>
|
|
<span class="phrase"><a name="math_toolkit.sf_gamma.digamma.description"></a></span><a class="link" href="digamma.html#math_toolkit.sf_gamma.digamma.description">Description</a>
|
|
</h5>
|
|
<p>
|
|
Returns the digamma or psi function of <span class="emphasis"><em>x</em></span>. Digamma is
|
|
defined as the logarithmic derivative of the gamma function:
|
|
</p>
|
|
<div class="blockquote"><blockquote class="blockquote"><p>
|
|
<span class="inlinemediaobject"><img src="../../../equations/digamma1.svg"></span>
|
|
|
|
</p></blockquote></div>
|
|
<div class="blockquote"><blockquote class="blockquote"><p>
|
|
<span class="inlinemediaobject"><img src="../../../graphs/digamma.svg" align="middle"></span>
|
|
|
|
</p></blockquote></div>
|
|
<p>
|
|
The final <a class="link" href="../../policy.html" title="Chapter 20. Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
|
|
be used to control the behaviour of the function: how it handles errors,
|
|
what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Chapter 20. Policies: Controlling Precision, Error Handling etc">policy
|
|
documentation for more details</a>.
|
|
</p>
|
|
<p>
|
|
The return type of this function is computed using the <a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>result
|
|
type calculation rules</em></span></a>: the result is of type <code class="computeroutput"><span class="keyword">double</span></code> when T is an integer type, and type
|
|
T otherwise.
|
|
</p>
|
|
<h5>
|
|
<a name="math_toolkit.sf_gamma.digamma.h2"></a>
|
|
<span class="phrase"><a name="math_toolkit.sf_gamma.digamma.accuracy"></a></span><a class="link" href="digamma.html#math_toolkit.sf_gamma.digamma.accuracy">Accuracy</a>
|
|
</h5>
|
|
<p>
|
|
The following table shows the peak errors (in units of epsilon) found on
|
|
various platforms with various floating point types. Unless otherwise specified
|
|
any floating point type that is narrower than the one shown will have <a class="link" href="../relative_error.html#math_toolkit.relative_error.zero_error">effectively zero error</a>.
|
|
</p>
|
|
<div class="table">
|
|
<a name="math_toolkit.sf_gamma.digamma.table_digamma"></a><p class="title"><b>Table 8.4. Error rates for digamma</b></p>
|
|
<div class="table-contents"><table class="table" summary="Error rates for digamma">
|
|
<colgroup>
|
|
<col>
|
|
<col>
|
|
<col>
|
|
<col>
|
|
<col>
|
|
</colgroup>
|
|
<thead><tr>
|
|
<th>
|
|
</th>
|
|
<th>
|
|
<p>
|
|
GNU C++ version 7.1.0<br> linux<br> double
|
|
</p>
|
|
</th>
|
|
<th>
|
|
<p>
|
|
GNU C++ version 7.1.0<br> linux<br> long double
|
|
</p>
|
|
</th>
|
|
<th>
|
|
<p>
|
|
Sun compiler version 0x5150<br> Sun Solaris<br> long double
|
|
</p>
|
|
</th>
|
|
<th>
|
|
<p>
|
|
Microsoft Visual C++ version 14.1<br> Win32<br> double
|
|
</p>
|
|
</th>
|
|
</tr></thead>
|
|
<tbody>
|
|
<tr>
|
|
<td>
|
|
<p>
|
|
Digamma Function: Large Values
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
<span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
|
|
2.1:</em></span> Max = 1.84ε (Mean = 0.71ε))<br> (<span class="emphasis"><em>Rmath
|
|
3.2.3:</em></span> Max = 1.18ε (Mean = 0.331ε))
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
<span class="blue">Max = 1.39ε (Mean = 0.413ε)</span>
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
<span class="blue">Max = 1.39ε (Mean = 0.413ε)</span>
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
<span class="blue">Max = 0.98ε (Mean = 0.369ε)</span>
|
|
</p>
|
|
</td>
|
|
</tr>
|
|
<tr>
|
|
<td>
|
|
<p>
|
|
Digamma Function: Near the Positive Root
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
<span class="blue">Max = 0.891ε (Mean = 0.0995ε)</span><br>
|
|
<br> (<span class="emphasis"><em>GSL 2.1:</em></span> Max = 135ε (Mean = 11.9ε))<br>
|
|
(<span class="emphasis"><em>Rmath 3.2.3:</em></span> Max = 2.02e+03ε (Mean = 256ε))
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
<span class="blue">Max = 1.37ε (Mean = 0.477ε)</span>
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
<span class="blue">Max = 1.31ε (Mean = 0.471ε)</span>
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
<span class="blue">Max = 0.997ε (Mean = 0.527ε)</span>
|
|
</p>
|
|
</td>
|
|
</tr>
|
|
<tr>
|
|
<td>
|
|
<p>
|
|
Digamma Function: Near Zero
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
<span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
|
|
2.1:</em></span> Max = 0.953ε (Mean = 0.348ε))<br> (<span class="emphasis"><em>Rmath
|
|
3.2.3:</em></span> Max = 1.17ε (Mean = 0.564ε))
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
<span class="blue">Max = 0.984ε (Mean = 0.361ε)</span>
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
<span class="blue">Max = 0.984ε (Mean = 0.361ε)</span>
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
<span class="blue">Max = 0.953ε (Mean = 0.337ε)</span>
|
|
</p>
|
|
</td>
|
|
</tr>
|
|
<tr>
|
|
<td>
|
|
<p>
|
|
Digamma Function: Negative Values
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
<span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
|
|
2.1:</em></span> Max = 4.56e+04ε (Mean = 3.91e+03ε))<br> (<span class="emphasis"><em>Rmath
|
|
3.2.3:</em></span> Max = 4.6e+04ε (Mean = 3.94e+03ε))
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
<span class="blue">Max = 180ε (Mean = 13ε)</span>
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
<span class="blue">Max = 180ε (Mean = 13ε)</span>
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
<span class="blue">Max = 214ε (Mean = 16.1ε)</span>
|
|
</p>
|
|
</td>
|
|
</tr>
|
|
<tr>
|
|
<td>
|
|
<p>
|
|
Digamma Function: Values near 0
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
<span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
|
|
2.1:</em></span> Max = 0.866ε (Mean = 0.387ε))<br> (<span class="emphasis"><em>Rmath
|
|
3.2.3:</em></span> Max = 3.58e+05ε (Mean = 1.6e+05ε))
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
<span class="blue">Max = 1ε (Mean = 0.592ε)</span>
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
<span class="blue">Max = 1ε (Mean = 0.592ε)</span>
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
<span class="blue">Max = 0ε (Mean = 0ε)</span>
|
|
</p>
|
|
</td>
|
|
</tr>
|
|
<tr>
|
|
<td>
|
|
<p>
|
|
Digamma Function: Integer arguments
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
<span class="blue">Max = 0.992ε (Mean = 0.215ε)</span><br> <br>
|
|
(<span class="emphasis"><em>GSL 2.1:</em></span> Max = 1.18ε (Mean = 0.607ε))<br>
|
|
(<span class="emphasis"><em>Rmath 3.2.3:</em></span> Max = 4.33ε (Mean = 0.982ε))
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
<span class="blue">Max = 0.888ε (Mean = 0.403ε)</span>
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
<span class="blue">Max = 0.888ε (Mean = 0.403ε)</span>
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
<span class="blue">Max = 0.992ε (Mean = 0.452ε)</span>
|
|
</p>
|
|
</td>
|
|
</tr>
|
|
<tr>
|
|
<td>
|
|
<p>
|
|
Digamma Function: Half integer arguments
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
<span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
|
|
2.1:</em></span> Max = 1.09ε (Mean = 0.531ε))<br> (<span class="emphasis"><em>Rmath
|
|
3.2.3:</em></span> Max = 46.2ε (Mean = 7.24ε))
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
<span class="blue">Max = 0.906ε (Mean = 0.409ε)</span>
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
<span class="blue">Max = 0.906ε (Mean = 0.409ε)</span>
|
|
</p>
|
|
</td>
|
|
<td>
|
|
<p>
|
|
<span class="blue">Max = 0.78ε (Mean = 0.314ε)</span>
|
|
</p>
|
|
</td>
|
|
</tr>
|
|
</tbody>
|
|
</table></div>
|
|
</div>
|
|
<br class="table-break"><p>
|
|
As shown above, error rates for positive arguments are generally very low.
|
|
For negative arguments there are an infinite number of irrational roots:
|
|
relative errors very close to these can be arbitrarily large, although absolute
|
|
error will remain very low.
|
|
</p>
|
|
<p>
|
|
The following error plot are based on an exhaustive search of the functions
|
|
domain, MSVC-15.5 at <code class="computeroutput"><span class="keyword">double</span></code>
|
|
precision, and GCC-7.1/Ubuntu for <code class="computeroutput"><span class="keyword">long</span>
|
|
<span class="keyword">double</span></code> and <code class="computeroutput"><span class="identifier">__float128</span></code>.
|
|
</p>
|
|
<div class="blockquote"><blockquote class="blockquote"><p>
|
|
<span class="inlinemediaobject"><img src="../../../graphs/digamma__double.svg" align="middle"></span>
|
|
|
|
</p></blockquote></div>
|
|
<div class="blockquote"><blockquote class="blockquote"><p>
|
|
<span class="inlinemediaobject"><img src="../../../graphs/digamma__80_bit_long_double.svg" align="middle"></span>
|
|
|
|
</p></blockquote></div>
|
|
<div class="blockquote"><blockquote class="blockquote"><p>
|
|
<span class="inlinemediaobject"><img src="../../../graphs/digamma____float128.svg" align="middle"></span>
|
|
|
|
</p></blockquote></div>
|
|
<h5>
|
|
<a name="math_toolkit.sf_gamma.digamma.h3"></a>
|
|
<span class="phrase"><a name="math_toolkit.sf_gamma.digamma.testing"></a></span><a class="link" href="digamma.html#math_toolkit.sf_gamma.digamma.testing">Testing</a>
|
|
</h5>
|
|
<p>
|
|
There are two sets of tests: spot values are computed using the online calculator
|
|
at functions.wolfram.com, while random test values are generated using the
|
|
high-precision reference implementation (a differentiated <a class="link" href="../lanczos.html" title="The Lanczos Approximation">Lanczos
|
|
approximation</a> see below).
|
|
</p>
|
|
<h5>
|
|
<a name="math_toolkit.sf_gamma.digamma.h4"></a>
|
|
<span class="phrase"><a name="math_toolkit.sf_gamma.digamma.implementation"></a></span><a class="link" href="digamma.html#math_toolkit.sf_gamma.digamma.implementation">Implementation</a>
|
|
</h5>
|
|
<p>
|
|
The implementation is divided up into the following domains:
|
|
</p>
|
|
<p>
|
|
For Negative arguments the reflection formula:
|
|
</p>
|
|
<pre class="programlisting"><span class="identifier">digamma</span><span class="special">(</span><span class="number">1</span><span class="special">-</span><span class="identifier">x</span><span class="special">)</span> <span class="special">=</span> <span class="identifier">digamma</span><span class="special">(</span><span class="identifier">x</span><span class="special">)</span> <span class="special">+</span> <span class="identifier">pi</span><span class="special">/</span><span class="identifier">tan</span><span class="special">(</span><span class="identifier">pi</span><span class="special">*</span><span class="identifier">x</span><span class="special">);</span>
|
|
</pre>
|
|
<p>
|
|
is used to make <span class="emphasis"><em>x</em></span> positive.
|
|
</p>
|
|
<p>
|
|
For arguments in the range [0,1] the recurrence relation:
|
|
</p>
|
|
<pre class="programlisting"><span class="identifier">digamma</span><span class="special">(</span><span class="identifier">x</span><span class="special">)</span> <span class="special">=</span> <span class="identifier">digamma</span><span class="special">(</span><span class="identifier">x</span><span class="special">+</span><span class="number">1</span><span class="special">)</span> <span class="special">-</span> <span class="number">1</span><span class="special">/</span><span class="identifier">x</span>
|
|
</pre>
|
|
<p>
|
|
is used to shift the evaluation to [1,2].
|
|
</p>
|
|
<p>
|
|
For arguments in the range [1,2] a rational approximation <a class="link" href="../sf_implementation.html#math_toolkit.sf_implementation.rational_approximations_used">devised
|
|
by JM</a> is used (see below).
|
|
</p>
|
|
<p>
|
|
For arguments in the range [2,BIG] the recurrence relation:
|
|
</p>
|
|
<pre class="programlisting"><span class="identifier">digamma</span><span class="special">(</span><span class="identifier">x</span><span class="special">+</span><span class="number">1</span><span class="special">)</span> <span class="special">=</span> <span class="identifier">digamma</span><span class="special">(</span><span class="identifier">x</span><span class="special">)</span> <span class="special">+</span> <span class="number">1</span><span class="special">/</span><span class="identifier">x</span><span class="special">;</span>
|
|
</pre>
|
|
<p>
|
|
is used to shift the evaluation to the range [1,2].
|
|
</p>
|
|
<p>
|
|
For arguments > BIG the asymptotic expansion:
|
|
</p>
|
|
<div class="blockquote"><blockquote class="blockquote"><p>
|
|
<span class="inlinemediaobject"><img src="../../../equations/digamma2.svg"></span>
|
|
|
|
</p></blockquote></div>
|
|
<p>
|
|
can be used. However, this expansion is divergent after a few terms: exactly
|
|
how many terms depends on the size of <span class="emphasis"><em>x</em></span>. Therefore the
|
|
value of <span class="emphasis"><em>BIG</em></span> must be chosen so that the series can be
|
|
truncated at a term that is too small to have any effect on the result when
|
|
evaluated at <span class="emphasis"><em>BIG</em></span>. Choosing BIG=10 for up to 80-bit reals,
|
|
and BIG=20 for 128-bit reals allows the series to truncated after a suitably
|
|
small number of terms and evaluated as a polynomial in <code class="computeroutput"><span class="number">1</span><span class="special">/(</span><span class="identifier">x</span><span class="special">*</span><span class="identifier">x</span><span class="special">)</span></code>.
|
|
</p>
|
|
<p>
|
|
The arbitrary precision version of this function uses recurrence relations
|
|
until x > BIG, and then evaluation via the asymptotic expansion above.
|
|
As special cases integer and half integer arguments are handled via:
|
|
</p>
|
|
<div class="blockquote"><blockquote class="blockquote"><p>
|
|
<span class="inlinemediaobject"><img src="../../../equations/digamma4.svg"></span>
|
|
|
|
</p></blockquote></div>
|
|
<div class="blockquote"><blockquote class="blockquote"><p>
|
|
<span class="inlinemediaobject"><img src="../../../equations/digamma5.svg"></span>
|
|
|
|
</p></blockquote></div>
|
|
<p>
|
|
The rational approximation <a class="link" href="../sf_implementation.html#math_toolkit.sf_implementation.rational_approximations_used">devised
|
|
by JM</a> in the range [1,2] is derived as follows.
|
|
</p>
|
|
<p>
|
|
First a high precision approximation to digamma was constructed using a 60-term
|
|
differentiated <a class="link" href="../lanczos.html" title="The Lanczos Approximation">Lanczos approximation</a>,
|
|
the form used is:
|
|
</p>
|
|
<div class="blockquote"><blockquote class="blockquote"><p>
|
|
<span class="inlinemediaobject"><img src="../../../equations/digamma3.svg"></span>
|
|
|
|
</p></blockquote></div>
|
|
<p>
|
|
Where P(x) and Q(x) are the polynomials from the rational form of the Lanczos
|
|
sum, and P'(x) and Q'(x) are their first derivatives. The Lanzos part of
|
|
this approximation has a theoretical precision of ~100 decimal digits. However,
|
|
cancellation in the above sum will reduce that to around <code class="computeroutput"><span class="number">99</span><span class="special">-(</span><span class="number">1</span><span class="special">/</span><span class="identifier">y</span><span class="special">)</span></code> digits
|
|
if <span class="emphasis"><em>y</em></span> is the result. This approximation was used to calculate
|
|
the positive root of digamma, and was found to agree with the value used
|
|
by Cody to 25 digits (See Math. Comp. 27, 123-127 (1973) by Cody, Strecok
|
|
and Thacher) and with the value used by Morris to 35 digits (See TOMS Algorithm
|
|
708).
|
|
</p>
|
|
<p>
|
|
Likewise a few spot tests agreed with values calculated using functions.wolfram.com
|
|
to >40 digits. That's sufficiently precise to insure that the approximation
|
|
below is accurate to double precision. Achieving 128-bit long double precision
|
|
requires that the location of the root is known to ~70 digits, and it's not
|
|
clear whether the value calculated by this method meets that requirement:
|
|
the difficulty lies in independently verifying the value obtained.
|
|
</p>
|
|
<p>
|
|
The rational approximation <a class="link" href="../sf_implementation.html#math_toolkit.sf_implementation.rational_approximations_used">devised
|
|
by JM</a> was optimised for absolute error using the form:
|
|
</p>
|
|
<pre class="programlisting"><span class="identifier">digamma</span><span class="special">(</span><span class="identifier">x</span><span class="special">)</span> <span class="special">=</span> <span class="special">(</span><span class="identifier">x</span> <span class="special">-</span> <span class="identifier">X0</span><span class="special">)(</span><span class="identifier">Y</span> <span class="special">+</span> <span class="identifier">R</span><span class="special">(</span><span class="identifier">x</span> <span class="special">-</span> <span class="number">1</span><span class="special">));</span>
|
|
</pre>
|
|
<p>
|
|
Where X0 is the positive root of digamma, Y is a constant, and R(x - 1) is
|
|
the rational approximation. Note that since X0 is irrational, we need twice
|
|
as many digits in X0 as in x in order to avoid cancellation error during
|
|
the subtraction (this assumes that <span class="emphasis"><em>x</em></span> is an exact value,
|
|
if it's not then all bets are off). That means that even when x is the value
|
|
of the root rounded to the nearest representable value, the result of digamma(x)
|
|
<span class="emphasis"><em><span class="bold"><strong>will not be zero</strong></span></em></span>.
|
|
</p>
|
|
</div>
|
|
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
|
|
<td align="left"></td>
|
|
<td align="right"><div class="copyright-footer">Copyright © 2006-2019 Nikhar
|
|
Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
|
|
Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
|
|
Råde, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
|
|
Daryle Walker and Xiaogang Zhang<p>
|
|
Distributed under the Boost Software License, Version 1.0. (See accompanying
|
|
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
|
|
</p>
|
|
</div></td>
|
|
</tr></table>
|
|
<hr>
|
|
<div class="spirit-nav">
|
|
<a accesskey="p" href="lgamma.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../sf_gamma.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="trigamma.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
|
|
</div>
|
|
</body>
|
|
</html>
|