math/doc/html/math_toolkit/sf_poly/gegenbauer.html
2019-10-31 17:55:35 +00:00

170 lines
19 KiB
HTML

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>Gegenbauer Polynomials</title>
<link rel="stylesheet" href="../../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
<link rel="home" href="../../index.html" title="Math Toolkit 2.11.0">
<link rel="up" href="../sf_poly.html" title="Polynomials">
<link rel="prev" href="cardinal_b_splines.html" title="Cardinal B-splines">
<link rel="next" href="jacobi.html" title="Jacobi Polynomials">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td>
<td align="center"><a href="../../../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="cardinal_b_splines.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../sf_poly.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="jacobi.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h3 class="title">
<a name="math_toolkit.sf_poly.gegenbauer"></a><a class="link" href="gegenbauer.html" title="Gegenbauer Polynomials">Gegenbauer Polynomials</a>
</h3></div></div></div>
<h5>
<a name="math_toolkit.sf_poly.gegenbauer.h0"></a>
<span class="phrase"><a name="math_toolkit.sf_poly.gegenbauer.synopsis"></a></span><a class="link" href="gegenbauer.html#math_toolkit.sf_poly.gegenbauer.synopsis">Synopsis</a>
</h5>
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">special_functions</span><span class="special">/</span><span class="identifier">gegenbauer</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
</pre>
<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span><span class="special">{</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Real</span><span class="special">&gt;</span>
<span class="identifier">Real</span> <span class="identifier">gegenbauer</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">lambda</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Real</span><span class="special">&gt;</span>
<span class="identifier">Real</span> <span class="identifier">gegenbauer_prime</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">lambda</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Real</span><span class="special">&gt;</span>
<span class="identifier">Real</span> <span class="identifier">gegenbauer_derivative</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">lambda</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">x</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">k</span><span class="special">);</span>
<span class="special">}}</span> <span class="comment">// namespaces</span>
</pre>
<p>
Gegenbauer polynomials are a family of orthogonal polynomials.
</p>
<p>
A basic usage is as follows:
</p>
<pre class="programlisting"><span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">gegenbauer</span><span class="special">;</span>
<span class="keyword">double</span> <span class="identifier">x</span> <span class="special">=</span> <span class="number">0.5</span><span class="special">;</span>
<span class="keyword">double</span> <span class="identifier">lambda</span> <span class="special">=</span> <span class="number">0.5</span><span class="special">;</span>
<span class="keyword">unsigned</span> <span class="identifier">n</span> <span class="special">=</span> <span class="number">3</span><span class="special">;</span>
<span class="keyword">double</span> <span class="identifier">y</span> <span class="special">=</span> <span class="identifier">gegenbauer</span><span class="special">(</span><span class="identifier">n</span><span class="special">,</span> <span class="identifier">lambda</span><span class="special">,</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<p>
All derivatives of the Gegenbauer polynomials are available. The <span class="emphasis"><em>k</em></span>-th
derivative of the <span class="emphasis"><em>n</em></span>-th Gegenbauer polynomial is given
by
</p>
<pre class="programlisting"><span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">gegenbauer_derivative</span><span class="special">;</span>
<span class="keyword">double</span> <span class="identifier">x</span> <span class="special">=</span> <span class="number">0.5</span><span class="special">;</span>
<span class="keyword">double</span> <span class="identifier">lambda</span> <span class="special">=</span> <span class="number">0.5</span><span class="special">;</span>
<span class="keyword">unsigned</span> <span class="identifier">n</span> <span class="special">=</span> <span class="number">3</span><span class="special">;</span>
<span class="keyword">unsigned</span> <span class="identifier">k</span> <span class="special">=</span> <span class="number">2</span><span class="special">;</span>
<span class="keyword">double</span> <span class="identifier">y</span> <span class="special">=</span> <span class="identifier">gegenbauer_derivative</span><span class="special">(</span><span class="identifier">n</span><span class="special">,</span> <span class="identifier">lambda</span><span class="special">,</span> <span class="identifier">x</span><span class="special">,</span> <span class="identifier">k</span><span class="special">);</span>
</pre>
<p>
For consistency with the rest of the library, <code class="computeroutput"><span class="identifier">gegenbauer_prime</span></code>
is provided which simply returns <code class="computeroutput"><span class="identifier">gegenbauer_derivative</span><span class="special">(</span><span class="identifier">n</span><span class="special">,</span>
<span class="identifier">lambda</span><span class="special">,</span>
<span class="identifier">x</span><span class="special">,</span><span class="number">1</span> <span class="special">)</span></code>.
</p>
<p>
<span class="inlinemediaobject"><object type="image/svg+xml" data="../../../graphs/gegenbauer.svg"></object></span>
</p>
<h4>
<a name="math_toolkit.sf_poly.gegenbauer.h1"></a>
<span class="phrase"><a name="math_toolkit.sf_poly.gegenbauer.implementation"></a></span><a class="link" href="gegenbauer.html#math_toolkit.sf_poly.gegenbauer.implementation">Implementation</a>
</h4>
<p>
The implementation uses the 3-term recurrence for the Gegenbauer polynomials,
rising.
</p>
<h4>
<a name="math_toolkit.sf_poly.gegenbauer.h2"></a>
<span class="phrase"><a name="math_toolkit.sf_poly.gegenbauer.performance"></a></span><a class="link" href="gegenbauer.html#math_toolkit.sf_poly.gegenbauer.performance">Performance</a>
</h4>
<p>
Double precision timing on a consumer x86 laptop is shown below. Included
is the time to generate a random number argument in the interval [-1, 1]
(which takes 11.5ns).
</p>
<pre class="programlisting"><span class="identifier">Run</span> <span class="identifier">on</span> <span class="special">(</span><span class="number">16</span> <span class="identifier">X</span> <span class="number">4300</span> <span class="identifier">MHz</span> <span class="identifier">CPU</span> <span class="identifier">s</span><span class="special">)</span>
<span class="identifier">CPU</span> <span class="identifier">Caches</span><span class="special">:</span>
<span class="identifier">L1</span> <span class="identifier">Data</span> <span class="number">32</span><span class="identifier">K</span> <span class="special">(</span><span class="identifier">x8</span><span class="special">)</span>
<span class="identifier">L1</span> <span class="identifier">Instruction</span> <span class="number">32</span><span class="identifier">K</span> <span class="special">(</span><span class="identifier">x8</span><span class="special">)</span>
<span class="identifier">L2</span> <span class="identifier">Unified</span> <span class="number">1024</span><span class="identifier">K</span> <span class="special">(</span><span class="identifier">x8</span><span class="special">)</span>
<span class="identifier">L3</span> <span class="identifier">Unified</span> <span class="number">11264</span><span class="identifier">K</span> <span class="special">(</span><span class="identifier">x1</span><span class="special">)</span>
<span class="identifier">Load</span> <span class="identifier">Average</span><span class="special">:</span> <span class="number">0.21</span><span class="special">,</span> <span class="number">0.33</span><span class="special">,</span> <span class="number">0.29</span>
<span class="special">-----------------------------------------</span>
<span class="identifier">Benchmark</span> <span class="identifier">Time</span>
<span class="special">-----------------------------------------</span>
<span class="identifier">Gegenbauer</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">1</span> <span class="number">12.5</span> <span class="identifier">ns</span>
<span class="identifier">Gegenbauer</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">2</span> <span class="number">13.5</span> <span class="identifier">ns</span>
<span class="identifier">Gegenbauer</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">3</span> <span class="number">14.6</span> <span class="identifier">ns</span>
<span class="identifier">Gegenbauer</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">4</span> <span class="number">16.0</span> <span class="identifier">ns</span>
<span class="identifier">Gegenbauer</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">5</span> <span class="number">17.5</span> <span class="identifier">ns</span>
<span class="identifier">Gegenbauer</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">6</span> <span class="number">19.2</span> <span class="identifier">ns</span>
<span class="identifier">Gegenbauer</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">7</span> <span class="number">20.7</span> <span class="identifier">ns</span>
<span class="identifier">Gegenbauer</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">8</span> <span class="number">22.2</span> <span class="identifier">ns</span>
<span class="identifier">Gegenbauer</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">9</span> <span class="number">23.6</span> <span class="identifier">ns</span>
<span class="identifier">Gegenbauer</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">10</span> <span class="number">25.2</span> <span class="identifier">ns</span>
<span class="identifier">Gegenbauer</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">11</span> <span class="number">26.9</span> <span class="identifier">ns</span>
<span class="identifier">Gegenbauer</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">12</span> <span class="number">28.7</span> <span class="identifier">ns</span>
<span class="identifier">Gegenbauer</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">13</span> <span class="number">30.5</span> <span class="identifier">ns</span>
<span class="identifier">Gegenbauer</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">14</span> <span class="number">32.5</span> <span class="identifier">ns</span>
<span class="identifier">Gegenbauer</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">15</span> <span class="number">34.3</span> <span class="identifier">ns</span>
<span class="identifier">Gegenbauer</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">16</span> <span class="number">36.3</span> <span class="identifier">ns</span>
<span class="identifier">Gegenbauer</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">17</span> <span class="number">38.0</span> <span class="identifier">ns</span>
<span class="identifier">Gegenbauer</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">18</span> <span class="number">39.9</span> <span class="identifier">ns</span>
<span class="identifier">Gegenbauer</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">19</span> <span class="number">41.8</span> <span class="identifier">ns</span>
<span class="identifier">Gegenbauer</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">20</span> <span class="number">43.8</span> <span class="identifier">ns</span>
<span class="identifier">UniformReal</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span> <span class="number">11.5</span> <span class="identifier">ns</span>
</pre>
<h4>
<a name="math_toolkit.sf_poly.gegenbauer.h3"></a>
<span class="phrase"><a name="math_toolkit.sf_poly.gegenbauer.accuracy"></a></span><a class="link" href="gegenbauer.html#math_toolkit.sf_poly.gegenbauer.accuracy">Accuracy</a>
</h4>
<p>
Some representative ULP plots are shown below. The relative accuracy cannot
be controlled at the roots of the polynomial, as is to be expected.
</p>
<p>
<span class="inlinemediaobject"><object type="image/svg+xml" data="../../../graphs/gegenbauer_ulp_3.svg"></object></span> <span class="inlinemediaobject"><object type="image/svg+xml" data="../../../graphs/gegenbauer_ulp_5.svg"></object></span>
<span class="inlinemediaobject"><object type="image/svg+xml" data="../../../graphs/gegenbauer_ulp_9.svg"></object></span>
</p>
<h4>
<a name="math_toolkit.sf_poly.gegenbauer.h4"></a>
<span class="phrase"><a name="math_toolkit.sf_poly.gegenbauer.caveats"></a></span><a class="link" href="gegenbauer.html#math_toolkit.sf_poly.gegenbauer.caveats">Caveats</a>
</h4>
<p>
Some programs define the Gegenbauer polynomial with &#955; = 0 via renormalization
(which makes them Chebyshev polynomials). We do not follow this convention:
In this case, only the zeroth Gegenbauer polynomial is nonzero.
</p>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><div class="copyright-footer">Copyright &#169; 2006-2019 Nikhar
Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
R&#229;de, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
Daryle Walker and Xiaogang Zhang<p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>
</div></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="cardinal_b_splines.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../sf_poly.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="jacobi.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>