math/doc/html/math_toolkit/sf_poly/sph_harm.html
2019-10-31 17:55:35 +00:00

339 lines
28 KiB
HTML

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>Spherical Harmonics</title>
<link rel="stylesheet" href="../../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
<link rel="home" href="../../index.html" title="Math Toolkit 2.11.0">
<link rel="up" href="../sf_poly.html" title="Polynomials">
<link rel="prev" href="chebyshev.html" title="Chebyshev Polynomials">
<link rel="next" href="cardinal_b_splines.html" title="Cardinal B-splines">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td>
<td align="center"><a href="../../../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="chebyshev.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../sf_poly.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="cardinal_b_splines.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h3 class="title">
<a name="math_toolkit.sf_poly.sph_harm"></a><a class="link" href="sph_harm.html" title="Spherical Harmonics">Spherical Harmonics</a>
</h3></div></div></div>
<h5>
<a name="math_toolkit.sf_poly.sph_harm.h0"></a>
<span class="phrase"><a name="math_toolkit.sf_poly.sph_harm.synopsis"></a></span><a class="link" href="sph_harm.html#math_toolkit.sf_poly.sph_harm.synopsis">Synopsis</a>
</h5>
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">special_functions</span><span class="special">/</span><span class="identifier">spherical_harmonic</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
</pre>
<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span><span class="special">{</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">&gt;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special">&lt;</span><a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a><span class="special">&gt;</span> <span class="identifier">spherical_harmonic</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">m</span><span class="special">,</span> <span class="identifier">T1</span> <span class="identifier">theta</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter&#160;20.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special">&lt;</span><a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a><span class="special">&gt;</span> <span class="identifier">spherical_harmonic</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">m</span><span class="special">,</span> <span class="identifier">T1</span> <span class="identifier">theta</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">phi</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter&#160;20.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">spherical_harmonic_r</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">m</span><span class="special">,</span> <span class="identifier">T1</span> <span class="identifier">theta</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter&#160;20.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">spherical_harmonic_r</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">m</span><span class="special">,</span> <span class="identifier">T1</span> <span class="identifier">theta</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">phi</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter&#160;20.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">spherical_harmonic_i</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">m</span><span class="special">,</span> <span class="identifier">T1</span> <span class="identifier">theta</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter&#160;20.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">spherical_harmonic_i</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">m</span><span class="special">,</span> <span class="identifier">T1</span> <span class="identifier">theta</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">phi</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter&#160;20.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
<span class="special">}}</span> <span class="comment">// namespaces</span>
</pre>
<h5>
<a name="math_toolkit.sf_poly.sph_harm.h1"></a>
<span class="phrase"><a name="math_toolkit.sf_poly.sph_harm.description"></a></span><a class="link" href="sph_harm.html#math_toolkit.sf_poly.sph_harm.description">Description</a>
</h5>
<p>
The return type of these functions is computed using the <a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>result
type calculation rules</em></span></a> when T1 and T2 are different types.
</p>
<p>
The final <a class="link" href="../../policy.html" title="Chapter&#160;20.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
be used to control the behaviour of the function: how it handles errors,
what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Chapter&#160;20.&#160;Policies: Controlling Precision, Error Handling etc">policy
documentation for more details</a>.
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">&gt;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special">&lt;</span><a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a><span class="special">&gt;</span> <span class="identifier">spherical_harmonic</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">m</span><span class="special">,</span> <span class="identifier">T1</span> <span class="identifier">theta</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter&#160;20.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special">&lt;</span><a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a><span class="special">&gt;</span> <span class="identifier">spherical_harmonic</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">m</span><span class="special">,</span> <span class="identifier">T1</span> <span class="identifier">theta</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">phi</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter&#160;20.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
</pre>
<p>
Returns the value of the Spherical Harmonic Y<sub>n</sub><sup>m</sup>(theta, phi):
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../equations/spherical_0.svg"></span>
</p></blockquote></div>
<p>
The spherical harmonics Y<sub>n</sub><sup>m</sup>(theta, phi) are the angular portion of the solution
to Laplace's equation in spherical coordinates where azimuthal symmetry is
not present.
</p>
<div class="caution"><table border="0" summary="Caution">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Caution]" src="../../../../../../doc/src/images/caution.png"></td>
<th align="left">Caution</th>
</tr>
<tr><td align="left" valign="top">
<p>
Care must be taken in correctly identifying the arguments to this function:
&#952; is taken as the polar (colatitudinal) coordinate with &#952; in [0, &#960;], and &#966;as
the azimuthal (longitudinal) coordinate with &#966;in [0,2&#960;). This is the convention
used in Physics, and matches the definition used by <a href="http://documents.wolfram.com/mathematica/functions/SphericalHarmonicY" target="_top">Mathematica
in the function SpericalHarmonicY</a>, but is opposite to the usual
mathematical conventions.
</p>
<p>
Some other sources include an additional Condon-Shortley phase term of
(-1)<sup>m</sup> in the definition of this function: note however that our definition
of the associated Legendre polynomial already includes this term.
</p>
<p>
This implementation returns zero for m &gt; n
</p>
<p>
For &#952; outside [0, &#960;] and &#966; outside [0, 2&#960;] this implementation follows the convention
used by Mathematica: the function is periodic with period &#960; in &#952; and 2&#960; in &#966;.
Please note that this is not the behaviour one would get from a casual
application of the function's definition. Cautious users should keep &#952; and
&#966; to the range [0, &#960;] and [0, 2&#960;] respectively.
</p>
<p>
See: <a href="http://mathworld.wolfram.com/SphericalHarmonic.html" target="_top">Weisstein,
Eric W. "Spherical Harmonic." From MathWorld--A Wolfram Web Resource</a>.
</p>
</td></tr>
</table></div>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">spherical_harmonic_r</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">m</span><span class="special">,</span> <span class="identifier">T1</span> <span class="identifier">theta</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter&#160;20.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">spherical_harmonic_r</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">m</span><span class="special">,</span> <span class="identifier">T1</span> <span class="identifier">theta</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">phi</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter&#160;20.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
</pre>
<p>
Returns the real part of Y<sub>n</sub><sup>m</sup>(theta, phi):
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../equations/spherical_1.svg"></span>
</p></blockquote></div>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">spherical_harmonic_i</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">m</span><span class="special">,</span> <span class="identifier">T1</span> <span class="identifier">theta</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter&#160;20.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">spherical_harmonic_i</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">m</span><span class="special">,</span> <span class="identifier">T1</span> <span class="identifier">theta</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">phi</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter&#160;20.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
</pre>
<p>
Returns the imaginary part of Y<sub>n</sub><sup>m</sup>(theta, phi):
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../equations/spherical_2.svg"></span>
</p></blockquote></div>
<h5>
<a name="math_toolkit.sf_poly.sph_harm.h2"></a>
<span class="phrase"><a name="math_toolkit.sf_poly.sph_harm.accuracy"></a></span><a class="link" href="sph_harm.html#math_toolkit.sf_poly.sph_harm.accuracy">Accuracy</a>
</h5>
<p>
The following table shows peak errors for various domains of input arguments.
Note that only results for the widest floating point type on the system are
given as narrower types have <a class="link" href="../relative_error.html#math_toolkit.relative_error.zero_error">effectively
zero error</a>. Peak errors are the same for both the real and imaginary
parts, as the error is dominated by calculation of the associated Legendre
polynomials: especially near the roots of the associated Legendre function.
</p>
<p>
All values are in units of epsilon.
</p>
<div class="table">
<a name="math_toolkit.sf_poly.sph_harm.table_spherical_harmonic_r"></a><p class="title"><b>Table&#160;8.38.&#160;Error rates for spherical_harmonic_r</b></p>
<div class="table-contents"><table class="table" summary="Error rates for spherical_harmonic_r">
<colgroup>
<col>
<col>
<col>
<col>
<col>
</colgroup>
<thead><tr>
<th>
</th>
<th>
<p>
GNU C++ version 7.1.0<br> linux<br> double
</p>
</th>
<th>
<p>
GNU C++ version 7.1.0<br> linux<br> long double
</p>
</th>
<th>
<p>
Sun compiler version 0x5150<br> Sun Solaris<br> long double
</p>
</th>
<th>
<p>
Microsoft Visual C++ version 14.1<br> Win32<br> double
</p>
</th>
</tr></thead>
<tbody><tr>
<td>
<p>
Spherical Harmonics
</p>
</td>
<td>
<p>
<span class="blue">Max = 1.58&#949; (Mean = 0.0707&#949;)</span>
</p>
</td>
<td>
<p>
<span class="blue">Max = 2.89e+03&#949; (Mean = 108&#949;)</span>
</p>
</td>
<td>
<p>
<span class="blue">Max = 1.03e+04&#949; (Mean = 327&#949;)</span>
</p>
</td>
<td>
<p>
<span class="blue">Max = 2.27e+04&#949; (Mean = 725&#949;)</span>
</p>
</td>
</tr></tbody>
</table></div>
</div>
<br class="table-break"><div class="table">
<a name="math_toolkit.sf_poly.sph_harm.table_spherical_harmonic_i"></a><p class="title"><b>Table&#160;8.39.&#160;Error rates for spherical_harmonic_i</b></p>
<div class="table-contents"><table class="table" summary="Error rates for spherical_harmonic_i">
<colgroup>
<col>
<col>
<col>
<col>
<col>
</colgroup>
<thead><tr>
<th>
</th>
<th>
<p>
GNU C++ version 7.1.0<br> linux<br> double
</p>
</th>
<th>
<p>
GNU C++ version 7.1.0<br> linux<br> long double
</p>
</th>
<th>
<p>
Sun compiler version 0x5150<br> Sun Solaris<br> long double
</p>
</th>
<th>
<p>
Microsoft Visual C++ version 14.1<br> Win32<br> double
</p>
</th>
</tr></thead>
<tbody><tr>
<td>
<p>
Spherical Harmonics
</p>
</td>
<td>
<p>
<span class="blue">Max = 1.36&#949; (Mean = 0.0765&#949;)</span>
</p>
</td>
<td>
<p>
<span class="blue">Max = 2.89e+03&#949; (Mean = 108&#949;)</span>
</p>
</td>
<td>
<p>
<span class="blue">Max = 1.03e+04&#949; (Mean = 327&#949;)</span>
</p>
</td>
<td>
<p>
<span class="blue">Max = 2.27e+04&#949; (Mean = 725&#949;)</span>
</p>
</td>
</tr></tbody>
</table></div>
</div>
<br class="table-break"><p>
Note that the worst errors occur when the degree increases, values greater
than ~120 are very unlikely to produce sensible results, especially when
the order is also large. Further the relative errors are likely to grow arbitrarily
large when the function is very close to a root.
</p>
<h5>
<a name="math_toolkit.sf_poly.sph_harm.h3"></a>
<span class="phrase"><a name="math_toolkit.sf_poly.sph_harm.testing"></a></span><a class="link" href="sph_harm.html#math_toolkit.sf_poly.sph_harm.testing">Testing</a>
</h5>
<p>
A mixture of spot tests of values calculated using functions.wolfram.com,
and randomly generated test data are used: the test data was computed using
<a href="http://shoup.net/ntl/doc/RR.txt" target="_top">NTL::RR</a> at 1000-bit
precision.
</p>
<h5>
<a name="math_toolkit.sf_poly.sph_harm.h4"></a>
<span class="phrase"><a name="math_toolkit.sf_poly.sph_harm.implementation"></a></span><a class="link" href="sph_harm.html#math_toolkit.sf_poly.sph_harm.implementation">Implementation</a>
</h5>
<p>
These functions are implemented fairly naively using the formulae given above.
Some extra care is taken to prevent roundoff error when converting from polar
coordinates (so for example the <span class="emphasis"><em>1-x<sup>2</sup></em></span> term used by the
associated Legendre functions is calculated without roundoff error using
<span class="emphasis"><em>x = cos(theta)</em></span>, and <span class="emphasis"><em>1-x<sup>2</sup> = sin<sup>2</sup>(theta)</em></span>).
The limiting factor in the error rates for these functions is the need to
calculate values near the roots of the associated Legendre functions.
</p>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><div class="copyright-footer">Copyright &#169; 2006-2019 Nikhar
Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
R&#229;de, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
Daryle Walker and Xiaogang Zhang<p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>
</div></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="chebyshev.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../sf_poly.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="cardinal_b_splines.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>