math/doc/html/math_toolkit/tr1_ref.html
2019-10-31 17:55:35 +00:00

561 lines
66 KiB
HTML

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>TR1 C Functions Quick Reference</title>
<link rel="stylesheet" href="../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
<link rel="home" href="../index.html" title="Math Toolkit 2.11.0">
<link rel="up" href="../extern_c.html" title='Chapter&#160;9.&#160;TR1 and C99 external "C" Functions'>
<link rel="prev" href="c99.html" title="C99 C Functions">
<link rel="next" href="../root_finding.html" title="Chapter&#160;10.&#160;Root Finding &amp; Minimization Algorithms">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
<td align="center"><a href="../../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="c99.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../extern_c.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../root_finding.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="math_toolkit.tr1_ref"></a><a class="link" href="tr1_ref.html" title="TR1 C Functions Quick Reference">TR1 C Functions Quick Reference</a>
</h2></div></div></div>
<h5>
<a name="math_toolkit.tr1_ref.h0"></a>
<span class="phrase"><a name="math_toolkit.tr1_ref.supported_tr1_functions"></a></span><a class="link" href="tr1_ref.html#math_toolkit.tr1_ref.supported_tr1_functions">Supported
TR1 Functions</a>
</h5>
<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">tr1</span><span class="special">{</span> <span class="keyword">extern</span> <span class="string">"C"</span><span class="special">{</span>
<span class="comment">// [5.2.1.1] associated Laguerre polynomials:</span>
<span class="keyword">double</span> <span class="identifier">assoc_laguerre</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">assoc_laguerref</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">assoc_laguerrel</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="comment">// [5.2.1.2] associated Legendre functions:</span>
<span class="keyword">double</span> <span class="identifier">assoc_legendre</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">assoc_legendref</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">assoc_legendrel</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="comment">// [5.2.1.3] beta function:</span>
<span class="keyword">double</span> <span class="identifier">beta</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">x</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">y</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">betaf</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">x</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">y</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">betal</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">y</span><span class="special">);</span>
<span class="comment">// [5.2.1.4] (complete) elliptic integral of the first kind:</span>
<span class="keyword">double</span> <span class="identifier">comp_ellint_1</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">k</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">comp_ellint_1f</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">k</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">comp_ellint_1l</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">k</span><span class="special">);</span>
<span class="comment">// [5.2.1.5] (complete) elliptic integral of the second kind:</span>
<span class="keyword">double</span> <span class="identifier">comp_ellint_2</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">k</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">comp_ellint_2f</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">k</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">comp_ellint_2l</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">k</span><span class="special">);</span>
<span class="comment">// [5.2.1.6] (complete) elliptic integral of the third kind:</span>
<span class="keyword">double</span> <span class="identifier">comp_ellint_3</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">comp_ellint_3f</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">nu</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">comp_ellint_3l</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">);</span>
<span class="comment">// [5.2.1.8] regular modified cylindrical Bessel functions:</span>
<span class="keyword">double</span> <span class="identifier">cyl_bessel_i</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">cyl_bessel_if</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">cyl_bessel_il</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="comment">// [5.2.1.9] cylindrical Bessel functions (of the first kind):</span>
<span class="keyword">double</span> <span class="identifier">cyl_bessel_j</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">cyl_bessel_jf</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">cyl_bessel_jl</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="comment">// [5.2.1.10] irregular modified cylindrical Bessel functions:</span>
<span class="keyword">double</span> <span class="identifier">cyl_bessel_k</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">cyl_bessel_kf</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">cyl_bessel_kl</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="comment">// [5.2.1.11] cylindrical Neumann functions;</span>
<span class="comment">// cylindrical Bessel functions (of the second kind):</span>
<span class="keyword">double</span> <span class="identifier">cyl_neumann</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">cyl_neumannf</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">cyl_neumannl</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="comment">// [5.2.1.12] (incomplete) elliptic integral of the first kind:</span>
<span class="keyword">double</span> <span class="identifier">ellint_1</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">ellint_1f</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">ellint_1l</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="comment">// [5.2.1.13] (incomplete) elliptic integral of the second kind:</span>
<span class="keyword">double</span> <span class="identifier">ellint_2</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">ellint_2f</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">ellint_2l</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="comment">// [5.2.1.14] (incomplete) elliptic integral of the third kind:</span>
<span class="keyword">double</span> <span class="identifier">ellint_3</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">ellint_3f</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">ellint_3l</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="comment">// [5.2.1.15] exponential integral:</span>
<span class="keyword">double</span> <span class="identifier">expint</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">expintf</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">expintl</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="comment">// [5.2.1.16] Hermite polynomials:</span>
<span class="keyword">double</span> <span class="identifier">hermite</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">hermitef</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">hermitel</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="comment">// [5.2.1.18] Laguerre polynomials:</span>
<span class="keyword">double</span> <span class="identifier">laguerre</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">laguerref</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">laguerrel</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="comment">// [5.2.1.19] Legendre polynomials:</span>
<span class="keyword">double</span> <span class="identifier">legendre</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">legendref</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">legendrel</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="comment">// [5.2.1.20] Riemann zeta function:</span>
<span class="keyword">double</span> <span class="identifier">riemann_zeta</span><span class="special">(</span><span class="keyword">double</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">riemann_zetaf</span><span class="special">(</span><span class="keyword">float</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">riemann_zetal</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span><span class="special">);</span>
<span class="comment">// [5.2.1.21] spherical Bessel functions (of the first kind):</span>
<span class="keyword">double</span> <span class="identifier">sph_bessel</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">sph_besself</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">sph_bessell</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="comment">// [5.2.1.22] spherical associated Legendre functions:</span>
<span class="keyword">double</span> <span class="identifier">sph_legendre</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">theta</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">sph_legendref</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">theta</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">sph_legendrel</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">theta</span><span class="special">);</span>
<span class="comment">// [5.2.1.23] spherical Neumann functions;</span>
<span class="comment">// spherical Bessel functions (of the second kind):</span>
<span class="keyword">double</span> <span class="identifier">sph_neumann</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">sph_neumannf</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">sph_neumannl</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="special">}}}}</span> <span class="comment">// namespaces</span>
</pre>
<p>
In addition sufficient additional overloads of the <code class="computeroutput"><span class="keyword">double</span></code>
versions of the above functions are provided, so that calling the function
with any mixture of <code class="computeroutput"><span class="keyword">float</span></code>, <code class="computeroutput"><span class="keyword">double</span></code>, <code class="computeroutput"><span class="keyword">long</span>
<span class="keyword">double</span></code>, or <span class="emphasis"><em>integer</em></span>
arguments is supported, with the return type determined by the <a class="link" href="result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>result
type calculation rules</em></span></a>.
</p>
<p>
For example:
</p>
<pre class="programlisting"><span class="identifier">expintf</span><span class="special">(</span><span class="number">2.0f</span><span class="special">);</span> <span class="comment">// float version, returns float.</span>
<span class="identifier">expint</span><span class="special">(</span><span class="number">2.0f</span><span class="special">);</span> <span class="comment">// also calls the float version and returns float.</span>
<span class="identifier">expint</span><span class="special">(</span><span class="number">2.0</span><span class="special">);</span> <span class="comment">// double version, returns double.</span>
<span class="identifier">expintl</span><span class="special">(</span><span class="number">2.0L</span><span class="special">);</span> <span class="comment">// long double version, returns a long double.</span>
<span class="identifier">expint</span><span class="special">(</span><span class="number">2.0L</span><span class="special">);</span> <span class="comment">// also calls the long double version.</span>
<span class="identifier">expint</span><span class="special">(</span><span class="number">2</span><span class="special">);</span> <span class="comment">// integer argument is treated as a double, returns double.</span>
</pre>
<h5>
<a name="math_toolkit.tr1_ref.h1"></a>
<span class="phrase"><a name="math_toolkit.tr1_ref.quick_reference"></a></span><a class="link" href="tr1_ref.html#math_toolkit.tr1_ref.quick_reference">Quick
Reference</a>
</h5>
<pre class="programlisting"><span class="comment">// [5.2.1.1] associated Laguerre polynomials:</span>
<span class="keyword">double</span> <span class="identifier">assoc_laguerre</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">assoc_laguerref</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">assoc_laguerrel</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<p>
The assoc_laguerre functions return:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/laguerre_1.svg"></span>
</p></blockquote></div>
<p>
See also <a class="link" href="sf_poly/laguerre.html" title="Laguerre (and Associated) Polynomials">laguerre</a> for
the full template (header only) version of this function.
</p>
<pre class="programlisting"><span class="comment">// [5.2.1.2] associated Legendre functions:</span>
<span class="keyword">double</span> <span class="identifier">assoc_legendre</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">assoc_legendref</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">assoc_legendrel</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<p>
The assoc_legendre functions return:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/legendre_1b.svg"></span>
</p></blockquote></div>
<p>
See also <a class="link" href="sf_poly/legendre.html" title="Legendre (and Associated) Polynomials">legendre_p</a> for
the full template (header only) version of this function.
</p>
<pre class="programlisting"><span class="comment">// [5.2.1.3] beta function:</span>
<span class="keyword">double</span> <span class="identifier">beta</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">x</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">y</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">betaf</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">x</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">y</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">betal</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">y</span><span class="special">);</span>
</pre>
<p>
Returns the beta function of <span class="emphasis"><em>x</em></span> and <span class="emphasis"><em>y</em></span>:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/beta1.svg"></span>
</p></blockquote></div>
<p>
See also <a class="link" href="sf_beta/beta_function.html" title="Beta">beta</a> for
the full template (header only) version of this function.
</p>
<pre class="programlisting"><span class="comment">// [5.2.1.4] (complete) elliptic integral of the first kind:</span>
<span class="keyword">double</span> <span class="identifier">comp_ellint_1</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">k</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">comp_ellint_1f</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">k</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">comp_ellint_1l</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">k</span><span class="special">);</span>
</pre>
<p>
Returns the complete elliptic integral of the first kind of <span class="emphasis"><em>k</em></span>:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/ellint6.svg"></span>
</p></blockquote></div>
<p>
See also <a class="link" href="ellint/ellint_1.html" title="Elliptic Integrals of the First Kind - Legendre Form">ellint_1</a> for the
full template (header only) version of this function.
</p>
<pre class="programlisting"><span class="comment">// [5.2.1.5] (complete) elliptic integral of the second kind:</span>
<span class="keyword">double</span> <span class="identifier">comp_ellint_2</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">k</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">comp_ellint_2f</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">k</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">comp_ellint_2l</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">k</span><span class="special">);</span>
</pre>
<p>
Returns the complete elliptic integral of the second kind of <span class="emphasis"><em>k</em></span>:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/ellint7.svg"></span>
</p></blockquote></div>
<p>
See also <a class="link" href="ellint/ellint_2.html" title="Elliptic Integrals of the Second Kind - Legendre Form">ellint_2</a> for the
full template (header only) version of this function.
</p>
<pre class="programlisting"><span class="comment">// [5.2.1.6] (complete) elliptic integral of the third kind:</span>
<span class="keyword">double</span> <span class="identifier">comp_ellint_3</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">comp_ellint_3f</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">nu</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">comp_ellint_3l</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">);</span>
</pre>
<p>
Returns the complete elliptic integral of the third kind of <span class="emphasis"><em>k</em></span>
and <span class="emphasis"><em>nu</em></span>:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/ellint8.svg"></span>
</p></blockquote></div>
<p>
See also <a class="link" href="ellint/ellint_3.html" title="Elliptic Integrals of the Third Kind - Legendre Form">ellint_3</a> for the
full template (header only) version of this function.
</p>
<pre class="programlisting"><span class="comment">// [5.2.1.8] regular modified cylindrical Bessel functions:</span>
<span class="keyword">double</span> <span class="identifier">cyl_bessel_i</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">cyl_bessel_if</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">cyl_bessel_il</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<p>
Returns the modified bessel function of the first kind of <span class="emphasis"><em>nu</em></span>
and <span class="emphasis"><em>x</em></span>:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/mbessel2.svg"></span>
</p></blockquote></div>
<p>
See also <a class="link" href="bessel/mbessel.html" title="Modified Bessel Functions of the First and Second Kinds">cyl_bessel_i</a> for
the full template (header only) version of this function.
</p>
<pre class="programlisting"><span class="comment">// [5.2.1.9] cylindrical Bessel functions (of the first kind):</span>
<span class="keyword">double</span> <span class="identifier">cyl_bessel_j</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">cyl_bessel_jf</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">cyl_bessel_jl</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<p>
Returns the bessel function of the first kind of <span class="emphasis"><em>nu</em></span> and
<span class="emphasis"><em>x</em></span>:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/bessel2.svg"></span>
</p></blockquote></div>
<p>
See also <a class="link" href="bessel/bessel_first.html" title="Bessel Functions of the First and Second Kinds">cyl_bessel_j</a>
for the full template (header only) version of this function.
</p>
<pre class="programlisting"><span class="comment">// [5.2.1.10] irregular modified cylindrical Bessel functions:</span>
<span class="keyword">double</span> <span class="identifier">cyl_bessel_k</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">cyl_bessel_kf</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">cyl_bessel_kl</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<p>
Returns the modified bessel function of the second kind of <span class="emphasis"><em>nu</em></span>
and <span class="emphasis"><em>x</em></span>:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/mbessel3.svg"></span>
</p></blockquote></div>
<p>
See also <a class="link" href="bessel/mbessel.html" title="Modified Bessel Functions of the First and Second Kinds">cyl_bessel_k</a> for
the full template (header only) version of this function.
</p>
<pre class="programlisting"><span class="comment">// [5.2.1.11] cylindrical Neumann functions;</span>
<span class="comment">// cylindrical Bessel functions (of the second kind):</span>
<span class="keyword">double</span> <span class="identifier">cyl_neumann</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">cyl_neumannf</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">cyl_neumannl</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<p>
Returns the bessel function of the second kind (Neumann function) of <span class="emphasis"><em>nu</em></span>
and <span class="emphasis"><em>x</em></span>:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/bessel3.svg"></span>
</p></blockquote></div>
<p>
See also <a class="link" href="bessel/bessel_first.html" title="Bessel Functions of the First and Second Kinds">cyl_neumann</a>
for the full template (header only) version of this function.
</p>
<pre class="programlisting"><span class="comment">// [5.2.1.12] (incomplete) elliptic integral of the first kind:</span>
<span class="keyword">double</span> <span class="identifier">ellint_1</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">ellint_1f</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">ellint_1l</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">phi</span><span class="special">);</span>
</pre>
<p>
Returns the incomplete elliptic integral of the first kind of <span class="emphasis"><em>k</em></span>
and <span class="emphasis"><em>phi</em></span>:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/ellint2.svg"></span>
</p></blockquote></div>
<p>
See also <a class="link" href="ellint/ellint_1.html" title="Elliptic Integrals of the First Kind - Legendre Form">ellint_1</a> for the
full template (header only) version of this function.
</p>
<pre class="programlisting"><span class="comment">// [5.2.1.13] (incomplete) elliptic integral of the second kind:</span>
<span class="keyword">double</span> <span class="identifier">ellint_2</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">ellint_2f</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">ellint_2l</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">phi</span><span class="special">);</span>
</pre>
<p>
Returns the incomplete elliptic integral of the second kind of <span class="emphasis"><em>k</em></span>
and <span class="emphasis"><em>phi</em></span>:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/ellint3.svg"></span>
</p></blockquote></div>
<p>
See also <a class="link" href="ellint/ellint_2.html" title="Elliptic Integrals of the Second Kind - Legendre Form">ellint_2</a> for the
full template (header only) version of this function.
</p>
<pre class="programlisting"><span class="comment">// [5.2.1.14] (incomplete) elliptic integral of the third kind:</span>
<span class="keyword">double</span> <span class="identifier">ellint_3</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">ellint_3f</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">ellint_3l</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">phi</span><span class="special">);</span>
</pre>
<p>
Returns the incomplete elliptic integral of the third kind of <span class="emphasis"><em>k</em></span>,
<span class="emphasis"><em>nu</em></span> and <span class="emphasis"><em>phi</em></span>:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/ellint4.svg"></span>
</p></blockquote></div>
<p>
See also <a class="link" href="ellint/ellint_3.html" title="Elliptic Integrals of the Third Kind - Legendre Form">ellint_3</a> for the
full template (header only) version of this function.
</p>
<pre class="programlisting"><span class="comment">// [5.2.1.15] exponential integral:</span>
<span class="keyword">double</span> <span class="identifier">expint</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">expintf</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">expintl</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<p>
Returns the exponential integral Ei of <span class="emphasis"><em>x</em></span>:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/expint_i_1.svg"></span>
</p></blockquote></div>
<p>
See also <a class="link" href="expint/expint_i.html" title="Exponential Integral Ei">expint</a> for the
full template (header only) version of this function.
</p>
<pre class="programlisting"><span class="comment">// [5.2.1.16] Hermite polynomials:</span>
<span class="keyword">double</span> <span class="identifier">hermite</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">hermitef</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">hermitel</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<p>
Returns the n'th Hermite polynomial of <span class="emphasis"><em>x</em></span>:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/hermite_0.svg"></span>
</p></blockquote></div>
<p>
See also <a class="link" href="sf_poly/hermite.html" title="Hermite Polynomials">hermite</a> for the
full template (header only) version of this function.
</p>
<pre class="programlisting"><span class="comment">// [5.2.1.18] Laguerre polynomials:</span>
<span class="keyword">double</span> <span class="identifier">laguerre</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">laguerref</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">laguerrel</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<p>
Returns the n'th Laguerre polynomial of <span class="emphasis"><em>x</em></span>:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/laguerre_0.svg"></span>
</p></blockquote></div>
<p>
See also <a class="link" href="sf_poly/laguerre.html" title="Laguerre (and Associated) Polynomials">laguerre</a> for
the full template (header only) version of this function.
</p>
<pre class="programlisting"><span class="comment">// [5.2.1.19] Legendre polynomials:</span>
<span class="keyword">double</span> <span class="identifier">legendre</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">legendref</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">legendrel</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<p>
Returns the l'th Legendre polynomial of <span class="emphasis"><em>x</em></span>:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/legendre_0.svg"></span>
</p></blockquote></div>
<p>
See also <a class="link" href="sf_poly/legendre.html" title="Legendre (and Associated) Polynomials">legendre_p</a> for
the full template (header only) version of this function.
</p>
<pre class="programlisting"><span class="comment">// [5.2.1.20] Riemann zeta function:</span>
<span class="keyword">double</span> <span class="identifier">riemann_zeta</span><span class="special">(</span><span class="keyword">double</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">riemann_zetaf</span><span class="special">(</span><span class="keyword">float</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">riemann_zetal</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span><span class="special">);</span>
</pre>
<p>
Returns the Riemann Zeta function of <span class="emphasis"><em>x</em></span>:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/zeta1.svg"></span>
</p></blockquote></div>
<p>
See also <a class="link" href="zetas/zeta.html" title="Riemann Zeta Function">zeta</a> for the full template
(header only) version of this function.
</p>
<pre class="programlisting"><span class="comment">// [5.2.1.21] spherical Bessel functions (of the first kind):</span>
<span class="keyword">double</span> <span class="identifier">sph_bessel</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">sph_besself</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">sph_bessell</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<p>
Returns the spherical Bessel function of the first kind of <span class="emphasis"><em>x</em></span>
j<sub>n</sub>(x):
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/sbessel2.svg"></span>
</p></blockquote></div>
<p>
See also <a class="link" href="bessel/sph_bessel.html" title="Spherical Bessel Functions of the First and Second Kinds">sph_bessel</a> for
the full template (header only) version of this function.
</p>
<pre class="programlisting"><span class="comment">// [5.2.1.22] spherical associated Legendre functions:</span>
<span class="keyword">double</span> <span class="identifier">sph_legendre</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">theta</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">sph_legendref</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">theta</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">sph_legendrel</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">theta</span><span class="special">);</span>
</pre>
<p>
Returns the spherical associated Legendre function of <span class="emphasis"><em>l</em></span>,
<span class="emphasis"><em>m</em></span> and <span class="emphasis"><em>theta</em></span>:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/spherical_3.svg"></span>
</p></blockquote></div>
<p>
See also <a class="link" href="sf_poly/sph_harm.html" title="Spherical Harmonics">spherical_harmonic</a>
for the full template (header only) version of this function.
</p>
<pre class="programlisting"><span class="comment">// [5.2.1.23] spherical Neumann functions;</span>
<span class="comment">// spherical Bessel functions (of the second kind):</span>
<span class="keyword">double</span> <span class="identifier">sph_neumann</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">sph_neumannf</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">sph_neumannl</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<p>
Returns the spherical Neumann function of <span class="emphasis"><em>x</em></span> y<sub>n</sub>(x):
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/sbessel2.svg"></span>
</p></blockquote></div>
<p>
See also <a class="link" href="bessel/sph_bessel.html" title="Spherical Bessel Functions of the First and Second Kinds">sph_bessel</a> for
the full template (header only) version of this function.
</p>
<h5>
<a name="math_toolkit.tr1_ref.h2"></a>
<span class="phrase"><a name="math_toolkit.tr1_ref.currently_unsupported_tr1_functi"></a></span><a class="link" href="tr1_ref.html#math_toolkit.tr1_ref.currently_unsupported_tr1_functi">Currently
Unsupported TR1 Functions</a>
</h5>
<pre class="programlisting"><span class="comment">// [5.2.1.7] confluent hypergeometric functions:</span>
<span class="keyword">double</span> <span class="identifier">conf_hyperg</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">a</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">c</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">conf_hypergf</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">a</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">c</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">conf_hypergl</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">a</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">c</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="comment">// [5.2.1.17] hypergeometric functions:</span>
<span class="keyword">double</span> <span class="identifier">hyperg</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">a</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">b</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">c</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">hypergf</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">a</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">b</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">c</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">hypergl</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">a</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">b</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">c</span><span class="special">,</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<div class="note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../../../doc/src/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top"><p>
These two functions are not implemented as they are not believed to be numerically
stable.
</p></td></tr>
</table></div>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><div class="copyright-footer">Copyright &#169; 2006-2019 Nikhar
Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
R&#229;de, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
Daryle Walker and Xiaogang Zhang<p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>
</div></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="c99.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../extern_c.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../root_finding.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>