72e469da0a
[CI SKIP]
247 lines
24 KiB
HTML
247 lines
24 KiB
HTML
<html>
|
|
<head>
|
|
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
|
|
<title>Trapezoidal Quadrature</title>
|
|
<link rel="stylesheet" href="../math.css" type="text/css">
|
|
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
|
|
<link rel="home" href="../index.html" title="Math Toolkit 2.11.0">
|
|
<link rel="up" href="../quadrature.html" title="Chapter 13. Quadrature and Differentiation">
|
|
<link rel="prev" href="../quadrature.html" title="Chapter 13. Quadrature and Differentiation">
|
|
<link rel="next" href="gauss.html" title="Gauss-Legendre quadrature">
|
|
</head>
|
|
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
|
|
<table cellpadding="2" width="100%"><tr>
|
|
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
|
|
<td align="center"><a href="../../../../../index.html">Home</a></td>
|
|
<td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
|
|
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
|
|
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
|
|
<td align="center"><a href="../../../../../more/index.htm">More</a></td>
|
|
</tr></table>
|
|
<hr>
|
|
<div class="spirit-nav">
|
|
<a accesskey="p" href="../quadrature.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../quadrature.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="gauss.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
|
|
</div>
|
|
<div class="section">
|
|
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
|
|
<a name="math_toolkit.trapezoidal"></a><a class="link" href="trapezoidal.html" title="Trapezoidal Quadrature">Trapezoidal Quadrature</a>
|
|
</h2></div></div></div>
|
|
<h4>
|
|
<a name="math_toolkit.trapezoidal.h0"></a>
|
|
<span class="phrase"><a name="math_toolkit.trapezoidal.synopsis"></a></span><a class="link" href="trapezoidal.html#math_toolkit.trapezoidal.synopsis">Synopsis</a>
|
|
</h4>
|
|
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">quadrature</span><span class="special">/</span><span class="identifier">trapezoidal</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
|
|
<span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">quadrature</span> <span class="special">{</span>
|
|
|
|
<span class="keyword">template</span><span class="special"><</span><span class="keyword">class</span> <span class="identifier">F</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">Real</span><span class="special">></span>
|
|
<span class="keyword">auto</span> <span class="identifier">trapezoidal</span><span class="special">(</span><span class="identifier">F</span> <span class="identifier">f</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">a</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">b</span><span class="special">,</span>
|
|
<span class="identifier">Real</span> <span class="identifier">tol</span> <span class="special">=</span> <span class="identifier">sqrt</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special"><</span><span class="identifier">Real</span><span class="special">>::</span><span class="identifier">epsilon</span><span class="special">()),</span>
|
|
<span class="identifier">size_t</span> <span class="identifier">max_refinements</span> <span class="special">=</span> <span class="number">12</span><span class="special">,</span>
|
|
<span class="identifier">Real</span><span class="special">*</span> <span class="identifier">error_estimate</span> <span class="special">=</span> <span class="keyword">nullptr</span><span class="special">,</span>
|
|
<span class="identifier">Real</span><span class="special">*</span> <span class="identifier">L1</span> <span class="special">=</span> <span class="keyword">nullptr</span><span class="special">);</span>
|
|
|
|
<span class="keyword">template</span><span class="special"><</span><span class="keyword">class</span> <span class="identifier">F</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">Real</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../policy.html" title="Chapter 20. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">></span>
|
|
<span class="keyword">auto</span> <span class="identifier">trapezoidal</span><span class="special">(</span><span class="identifier">F</span> <span class="identifier">f</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">a</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">b</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">tol</span><span class="special">,</span> <span class="identifier">size_t</span> <span class="identifier">max_refinements</span><span class="special">,</span>
|
|
<span class="identifier">Real</span><span class="special">*</span> <span class="identifier">error_estimate</span><span class="special">,</span> <span class="identifier">Real</span><span class="special">*</span> <span class="identifier">L1</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../policy.html" title="Chapter 20. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&</span> <span class="identifier">pol</span><span class="special">);</span>
|
|
|
|
<span class="special">}}}</span> <span class="comment">// namespaces</span>
|
|
</pre>
|
|
<h4>
|
|
<a name="math_toolkit.trapezoidal.h1"></a>
|
|
<span class="phrase"><a name="math_toolkit.trapezoidal.description"></a></span><a class="link" href="trapezoidal.html#math_toolkit.trapezoidal.description">Description</a>
|
|
</h4>
|
|
<p>
|
|
The functional <code class="computeroutput"><span class="identifier">trapezoidal</span></code>
|
|
calculates the integral of a function <span class="emphasis"><em>f</em></span> using the surprisingly
|
|
simple trapezoidal rule. If we assume only that the integrand is twice continuously
|
|
differentiable, we can prove that the error of the composite trapezoidal rule
|
|
is 𝑶(h<sup>2</sup>). Hence halving the interval only cuts the error by about a fourth,
|
|
which in turn implies that we must evaluate the function many times before
|
|
an acceptable accuracy can be achieved.
|
|
</p>
|
|
<p>
|
|
However, the trapezoidal rule has an astonishing property: If the integrand
|
|
is periodic, and we integrate it over a period, then the trapezoidal rule converges
|
|
faster than any power of the step size <span class="emphasis"><em>h</em></span>. This can be
|
|
seen by examination of the <a href="https://en.wikipedia.org/wiki/Euler-Maclaurin_formula" target="_top">Euler-Maclaurin
|
|
summation formula</a>, which relates a definite integral to its trapezoidal
|
|
sum and error terms proportional to the derivatives of the function at the
|
|
endpoints and the Bernoulli numbers. If the derivatives at the endpoints are
|
|
the same or vanish, then the error very nearly vanishes. Hence the trapezoidal
|
|
rule is essentially optimal for periodic integrands.
|
|
</p>
|
|
<p>
|
|
Other classes of integrands which are integrated efficiently by this method
|
|
are the C<sub>0</sub><sup>∞</sup>(∝) <a href="https://en.wikipedia.org/wiki/Bump_function" target="_top">bump
|
|
functions</a> and bell-shaped integrals over the infinite interval. For
|
|
details, see <a href="http://epubs.siam.org/doi/pdf/10.1137/130932132" target="_top">Trefethen's</a>
|
|
SIAM review.
|
|
</p>
|
|
<p>
|
|
In its simplest form, an integration can be performed by the following code
|
|
</p>
|
|
<pre class="programlisting"><span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">quadrature</span><span class="special">::</span><span class="identifier">trapezoidal</span><span class="special">;</span>
|
|
<span class="keyword">auto</span> <span class="identifier">f</span> <span class="special">=</span> <span class="special">[](</span><span class="keyword">double</span> <span class="identifier">x</span><span class="special">)</span> <span class="special">{</span> <span class="keyword">return</span> <span class="number">1</span><span class="special">/(</span><span class="number">5</span> <span class="special">-</span> <span class="number">4</span><span class="special">*</span><span class="identifier">cos</span><span class="special">(</span><span class="identifier">x</span><span class="special">));</span> <span class="special">};</span>
|
|
<span class="keyword">double</span> <span class="identifier">I</span> <span class="special">=</span> <span class="identifier">trapezoidal</span><span class="special">(</span><span class="identifier">f</span><span class="special">,</span> <span class="number">0.0</span><span class="special">,</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">constants</span><span class="special">::</span><span class="identifier">two_pi</span><span class="special"><</span><span class="keyword">double</span><span class="special">>());</span>
|
|
</pre>
|
|
<p>
|
|
The integrand must accept a real number argument, but can return a complex
|
|
number. This is useful for contour integrals (which are manifestly periodic)
|
|
and high-order numerical differentiation of analytic functions. An example
|
|
using the integral definition of the complex Bessel function is shown here:
|
|
</p>
|
|
<pre class="programlisting"><span class="keyword">auto</span> <span class="identifier">bessel_integrand</span> <span class="special">=</span> <span class="special">[&</span><span class="identifier">n</span><span class="special">,</span> <span class="special">&</span><span class="identifier">z</span><span class="special">](</span><span class="keyword">double</span> <span class="identifier">theta</span><span class="special">)-></span><span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special"><</span><span class="keyword">double</span><span class="special">></span>
|
|
<span class="special">{</span>
|
|
<span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special"><</span><span class="keyword">double</span><span class="special">></span> <span class="identifier">z</span><span class="special">{</span><span class="number">2</span><span class="special">,</span> <span class="number">3</span><span class="special">};</span>
|
|
<span class="keyword">using</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">cos</span><span class="special">;</span>
|
|
<span class="keyword">using</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">sin</span><span class="special">;</span>
|
|
<span class="keyword">return</span> <span class="identifier">cos</span><span class="special">(</span><span class="identifier">z</span><span class="special">*</span><span class="identifier">sin</span><span class="special">(</span><span class="identifier">theta</span><span class="special">)</span> <span class="special">-</span> <span class="number">2</span><span class="special">*</span><span class="identifier">theta</span><span class="special">)/</span><span class="identifier">pi</span><span class="special"><</span><span class="keyword">double</span><span class="special">>();</span>
|
|
<span class="special">};</span>
|
|
|
|
<span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">quadrature</span><span class="special">::</span><span class="identifier">trapezoidal</span><span class="special">;</span>
|
|
<span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special"><</span><span class="keyword">double</span><span class="special">></span> <span class="identifier">Jnz</span> <span class="special">=</span> <span class="identifier">trapezoidal</span><span class="special">(</span><span class="identifier">bessel_integrand</span><span class="special">,</span> <span class="number">0.0</span><span class="special">,</span> <span class="identifier">pi</span><span class="special"><</span><span class="identifier">Real</span><span class="special">>());</span>
|
|
</pre>
|
|
<p>
|
|
Other special functions which are efficiently evaluated in the complex plane
|
|
by trapezoidal quadrature are modified Bessel functions and the complementary
|
|
error function. Another application of complex-valued trapezoidal quadrature
|
|
is computation of high-order numerical derivatives; see Lyness and Moler for
|
|
details.
|
|
</p>
|
|
<p>
|
|
Since the routine is adaptive, step sizes are halved continuously until a tolerance
|
|
is reached. In order to control this tolerance, simply call the routine with
|
|
an additional argument
|
|
</p>
|
|
<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">I</span> <span class="special">=</span> <span class="identifier">trapezoidal</span><span class="special">(</span><span class="identifier">f</span><span class="special">,</span> <span class="number">0.0</span><span class="special">,</span> <span class="identifier">two_pi</span><span class="special"><</span><span class="keyword">double</span><span class="special">>(),</span> <span class="number">1e-6</span><span class="special">);</span>
|
|
</pre>
|
|
<p>
|
|
The routine stops when successive estimates of the integral <code class="computeroutput"><span class="identifier">I1</span></code>
|
|
and <code class="computeroutput"><span class="identifier">I0</span></code> differ by less than
|
|
the tolerance multiplied by the estimated L<sub>1</sub> norm of the function. A good choice
|
|
for the tolerance is √ε, which is the default. If the integrand is periodic,
|
|
then the number of correct digits should double on each interval halving. Hence,
|
|
once the integration routine has estimated that the error is √ε, then the actual
|
|
error should be ~ε. If the integrand is <span class="bold"><strong>not</strong></span>
|
|
periodic, then reducing the error to √ε takes much longer, but is nonetheless
|
|
possible without becoming a major performance bug.
|
|
</p>
|
|
<p>
|
|
A question arises as to what to do when successive estimates never pass below
|
|
the tolerance threshold. The stepsize would be halved repeatedly, generating
|
|
an exponential explosion in function evaluations. As such, you may pass an
|
|
optional argument <code class="computeroutput"><span class="identifier">max_refinements</span></code>
|
|
which controls how many times the interval may be halved before giving up.
|
|
By default, this maximum number of refinement steps is 12, which should never
|
|
be hit in double precision unless the function is not periodic. However, for
|
|
higher-precision types, it may be of interest to allow the algorithm to compute
|
|
more refinements:
|
|
</p>
|
|
<pre class="programlisting"><span class="identifier">size_t</span> <span class="identifier">max_refinements</span> <span class="special">=</span> <span class="number">15</span><span class="special">;</span>
|
|
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">I</span> <span class="special">=</span> <span class="identifier">trapezoidal</span><span class="special">(</span><span class="identifier">f</span><span class="special">,</span> <span class="number">0.0L</span><span class="special">,</span> <span class="identifier">two_pi</span><span class="special"><</span><span class="keyword">long</span> <span class="keyword">double</span><span class="special">>(),</span> <span class="number">1e-9L</span><span class="special">,</span> <span class="identifier">max_refinements</span><span class="special">);</span>
|
|
</pre>
|
|
<p>
|
|
Note that the maximum allowed compute time grows exponentially with <code class="computeroutput"><span class="identifier">max_refinements</span></code>. The routine will not throw
|
|
an exception if the maximum refinements is achieved without the requested tolerance
|
|
being attained. This is because the value calculated is more often than not
|
|
still usable. However, for applications with high-reliability requirements,
|
|
the error estimate should be queried. This is achieved by passing additional
|
|
pointers into the routine:
|
|
</p>
|
|
<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">error_estimate</span><span class="special">;</span>
|
|
<span class="keyword">double</span> <span class="identifier">L1</span><span class="special">;</span>
|
|
<span class="keyword">double</span> <span class="identifier">I</span> <span class="special">=</span> <span class="identifier">trapezoidal</span><span class="special">(</span><span class="identifier">f</span><span class="special">,</span> <span class="number">0.0</span><span class="special">,</span> <span class="identifier">two_pi</span><span class="special"><</span><span class="keyword">double</span><span class="special">>(),</span> <span class="identifier">tolerance</span><span class="special">,</span> <span class="identifier">max_refinements</span><span class="special">,</span> <span class="special">&</span><span class="identifier">error_estimate</span><span class="special">,</span> <span class="special">&</span><span class="identifier">L1</span><span class="special">);</span>
|
|
<span class="keyword">if</span> <span class="special">(</span><span class="identifier">error_estimate</span> <span class="special">></span> <span class="identifier">tolerance</span><span class="special">*</span><span class="identifier">L1</span><span class="special">)</span>
|
|
<span class="special">{</span>
|
|
<span class="keyword">double</span> <span class="identifier">I</span> <span class="special">=</span> <span class="identifier">some_other_quadrature_method</span><span class="special">(</span><span class="identifier">f</span><span class="special">,</span> <span class="number">0</span><span class="special">,</span> <span class="identifier">two_pi</span><span class="special"><</span><span class="keyword">double</span><span class="special">>());</span>
|
|
<span class="special">}</span>
|
|
</pre>
|
|
<p>
|
|
The final argument is the L<sub>1</sub> norm of the integral. This is computed along with
|
|
the integral, and is an essential component of the algorithm. First, the L<sub>1</sub> norm
|
|
establishes a scale against which the error can be measured. Second, the L<sub>1</sub> norm
|
|
can be used to evaluate the stability of the computation. This can be formulated
|
|
in a rigorous manner by defining the <span class="bold"><strong>condition number
|
|
of summation</strong></span>. The condition number of summation is defined by
|
|
</p>
|
|
<div class="blockquote"><blockquote class="blockquote"><p>
|
|
<span class="serif_italic"><span class="emphasis"><em>κ(S<sub>n</sub>) := Σ<sub>i</sub><sup>n</sup> |x<sub>i</sub>|/|Σ<sub>i</sub><sup>n</sup> x<sub>i</sub>|</em></span></span>
|
|
</p></blockquote></div>
|
|
<p>
|
|
If this number of ~10<sup>k</sup>, then <span class="emphasis"><em>k</em></span> additional digits are expected
|
|
to be lost in addition to digits lost due to floating point rounding error.
|
|
As all numerical quadrature methods reduce to summation, their stability is
|
|
controlled by the ratio ∫ |f| dt/|∫ f dt |, which is easily seen
|
|
to be equivalent to condition number of summation when evaluated numerically.
|
|
Hence both the error estimate and the condition number of summation should
|
|
be analyzed in applications requiring very high precision and reliability.
|
|
</p>
|
|
<p>
|
|
As an example, we consider evaluation of Bessel functions by trapezoidal quadrature.
|
|
The Bessel function of the first kind is defined via
|
|
</p>
|
|
<div class="blockquote"><blockquote class="blockquote"><p>
|
|
<span class="serif_italic"><span class="emphasis"><em>J<sub>n</sub>(x) = 1/2Π ∫<sub>-Π</sub><sup>Π</sup> cos(n
|
|
t - x sin(t)) dt</em></span></span>
|
|
</p></blockquote></div>
|
|
<p>
|
|
The integrand is periodic, so the Euler-Maclaurin summation formula guarantees
|
|
exponential convergence via the trapezoidal quadrature. Without careful consideration,
|
|
it seems this would be a very attractive method to compute Bessel functions.
|
|
However, we see that for large <span class="emphasis"><em>n</em></span> the integrand oscillates
|
|
rapidly, taking on positive and negative values, and hence the trapezoidal
|
|
sums become ill-conditioned. In double precision, <span class="emphasis"><em>x = 17</em></span>
|
|
and <span class="emphasis"><em>n = 25</em></span> gives a sum which is so poorly conditioned
|
|
that zero correct digits are obtained.
|
|
</p>
|
|
<p>
|
|
The final <a class="link" href="../policy.html" title="Chapter 20. Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
|
|
be used to control the behaviour of the function: how it handles errors, what
|
|
level of precision to use etc. Refer to the <a class="link" href="../policy.html" title="Chapter 20. Policies: Controlling Precision, Error Handling etc">policy documentation
|
|
for more details</a>.
|
|
</p>
|
|
<p>
|
|
References:
|
|
</p>
|
|
<p>
|
|
Trefethen, Lloyd N., Weideman, J.A.C., <span class="emphasis"><em>The Exponentially Convergent
|
|
Trapezoidal Rule</em></span>, SIAM Review, Vol. 56, No. 3, 2014.
|
|
</p>
|
|
<p>
|
|
Stoer, Josef, and Roland Bulirsch. <span class="emphasis"><em>Introduction to numerical analysis.
|
|
Vol. 12.</em></span>, Springer Science & Business Media, 2013.
|
|
</p>
|
|
<p>
|
|
Higham, Nicholas J. <span class="emphasis"><em>Accuracy and stability of numerical algorithms.</em></span>
|
|
Society for industrial and applied mathematics, 2002.
|
|
</p>
|
|
<p>
|
|
Lyness, James N., and Cleve B. Moler. <span class="emphasis"><em>Numerical differentiation of
|
|
analytic functions.</em></span> SIAM Journal on Numerical Analysis 4.2 (1967):
|
|
202-210.
|
|
</p>
|
|
<p>
|
|
Gil, Amparo, Javier Segura, and Nico M. Temme. <span class="emphasis"><em>Computing special
|
|
functions by using quadrature rules.</em></span> Numerical Algorithms 33.1-4
|
|
(2003): 265-275.
|
|
</p>
|
|
</div>
|
|
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
|
|
<td align="left"></td>
|
|
<td align="right"><div class="copyright-footer">Copyright © 2006-2019 Nikhar
|
|
Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
|
|
Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
|
|
Råde, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
|
|
Daryle Walker and Xiaogang Zhang<p>
|
|
Distributed under the Boost Software License, Version 1.0. (See accompanying
|
|
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
|
|
</p>
|
|
</div></td>
|
|
</tr></table>
|
|
<hr>
|
|
<div class="spirit-nav">
|
|
<a accesskey="p" href="../quadrature.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../quadrature.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="gauss.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
|
|
</div>
|
|
</body>
|
|
</html>
|