math/doc/internals/test_data.qbk

446 lines
16 KiB
Plaintext

[section:test_data Graphing, Profiling, and Generating Test Data for Special Functions]
The class `test_data` and associated helper functions are designed so that in just
a few lines of code you should be able to:
* Profile a continued fraction, or infinite series for convergence and accuracy.
* Generate csv data from a special function that can be imported into your favorite
graphing program (or spreadsheet) for further analysis.
* Generate high precision test data.
[h4 Synopsis]
#include <boost/math/tools/test_data.hpp>
[important
This is a non-core Boost.Math header that is predominantly used for internal
maintenance of the library: as a result the library is located under
`libs/math/include_private` and you will need to add that directory to
your include path in order to use this feature.
]
namespace boost{ namespace math{ namespace tools{
enum parameter_type
{
random_in_range = 0,
periodic_in_range = 1,
power_series = 2,
dummy_param = 0x80,
};
template <class T>
struct parameter_info;
template <class T>
parameter_info<T> make_random_param(T start_range, T end_range, int n_points);
template <class T>
parameter_info<T> make_periodic_param(T start_range, T end_range, int n_points);
template <class T>
parameter_info<T> make_power_param(T basis, int start_exponent, int end_exponent);
template <class T>
bool get_user_parameter_info(parameter_info<T>& info, const char* param_name);
template <class T>
class test_data
{
public:
typedef std::vector<T> row_type;
typedef row_type value_type;
private:
typedef std::set<row_type> container_type;
public:
typedef typename container_type::reference reference;
typedef typename container_type::const_reference const_reference;
typedef typename container_type::iterator iterator;
typedef typename container_type::const_iterator const_iterator;
typedef typename container_type::difference_type difference_type;
typedef typename container_type::size_type size_type;
// creation:
test_data(){}
template <class F>
test_data(F func, const parameter_info<T>& arg1);
// insertion:
template <class F>
test_data& insert(F func, const parameter_info<T>& arg1);
template <class F>
test_data& insert(F func, const parameter_info<T>& arg1,
const parameter_info<T>& arg2);
template <class F>
test_data& insert(F func, const parameter_info<T>& arg1,
const parameter_info<T>& arg2,
const parameter_info<T>& arg3);
void clear();
// access:
iterator begin();
iterator end();
const_iterator begin()const;
const_iterator end()const;
bool operator==(const test_data& d)const;
bool operator!=(const test_data& d)const;
void swap(test_data& other);
size_type size()const;
size_type max_size()const;
bool empty()const;
bool operator < (const test_data& dat)const;
bool operator <= (const test_data& dat)const;
bool operator > (const test_data& dat)const;
bool operator >= (const test_data& dat)const;
};
template <class charT, class traits, class T>
std::basic_ostream<charT, traits>& write_csv(
std::basic_ostream<charT, traits>& os,
const test_data<T>& data);
template <class charT, class traits, class T>
std::basic_ostream<charT, traits>& write_csv(
std::basic_ostream<charT, traits>& os,
const test_data<T>& data,
const charT* separator);
template <class T>
std::ostream& write_code(std::ostream& os,
const test_data<T>& data,
const char* name);
}}} // namespaces
[h4 Description]
This tool is best illustrated with the following series of examples.
The functionality of test_data is split into the following parts:
* A functor that implements the function for which data is being generated:
this is the bit you have to write.
* One of more parameters that are to be passed to the functor, these are
described in fairly abstract terms: give me N points distributed like /this/ etc.
* The class test_data, that takes the functor and descriptions of the parameters
and computes how ever many output points have been requested, these are stored
in a sorted container.
* Routines to iterate over the test_data container and output the data in either
csv format, or as C++ source code (as a table using Boost.Array).
[h5 Example 1: Output Data for Graph Plotting]
For example, lets say we want to graph the lgamma function between -3 and 100,
one could do this like so:
#include <boost/math/tools/test_data.hpp>
#include <boost/math/special_functions/gamma.hpp>
int main()
{
using namespace boost::math::tools;
// create an object to hold the data:
test_data<double> data;
// insert 500 points at uniform intervals between just after -3 and 100:
double (*pf)(double) = boost::math::lgamma;
data.insert(pf, make_periodic_param(-3.0 + 0.00001, 100.0, 500));
// print out in csv format:
write_csv(std::cout, data, ", ");
return 0;
}
Which, when plotted, results in:
[graph lgamma]
[h5 Example 2: Creating Test Data]
As a second example, let's suppose we want to create highly accurate test
data for a special function. Since many special functions have two or
more independent parameters, it's very hard to effectively cover all of
the possible parameter space without generating gigabytes of data at
great computational expense. A second best approach is to provide the tools
by which a user (or the library maintainer) can quickly generate more data
on demand to probe the function over a particular domain of interest.
In this example we'll generate test data for the beta function using
[@http://shoup.net/ntl/doc/RR.txt NTL::RR] at 1000 bit precision.
Rather than call our generic
version of the beta function, we'll implement a deliberately naive version
of the beta function using lgamma, and rely on the high precision of the
data type used to get results accurate to at least 128-bit precision. In this
way our test data is independent of whatever clever tricks we may wish to
use inside the our beta function.
To start with then, here's the function object that creates the test data:
#include <boost/math/tools/ntl.hpp>
#include <boost/math/special_functions/gamma.hpp>
#include <boost/math/tools/test_data.hpp>
#include <fstream>
#include <boost/math/tools/test_data.hpp>
using namespace boost::math::tools;
struct beta_data_generator
{
NTL::RR operator()(NTL::RR a, NTL::RR b)
{
//
// If we throw a domain error then test_data will
// ignore this input point. We'll use this to filter
// out all cases where a < b since the beta function
// is symmetrical in a and b:
//
if(a < b)
throw std::domain_error("");
// very naively calculate spots with lgamma:
NTL::RR g1, g2, g3;
int s1, s2, s3;
g1 = boost::math::lgamma(a, &s1);
g2 = boost::math::lgamma(b, &s2);
g3 = boost::math::lgamma(a+b, &s3);
g1 += g2 - g3;
g1 = exp(g1);
g1 *= s1 * s2 * s3;
return g1;
}
};
To create the data, we'll need to input the domains for a and b
for which the function will be tested: the function `get_user_parameter_info`
is designed for just that purpose. The start of main will look something like:
// Set the precision on RR:
NTL::RR::SetPrecision(1000); // bits.
NTL::RR::SetOutputPrecision(40); // decimal digits.
parameter_info<NTL::RR> arg1, arg2;
test_data<NTL::RR> data;
std::cout << "Welcome.\n"
"This program will generate spot tests for the beta function:\n"
" beta(a, b)\n\n";
bool cont;
std::string line;
do{
// prompt the user for the domain of a and b to test:
get_user_parameter_info(arg1, "a");
get_user_parameter_info(arg2, "b");
// create the data:
data.insert(beta_data_generator(), arg1, arg2);
// see if the user want's any more domains tested:
std::cout << "Any more data [y/n]?";
std::getline(std::cin, line);
boost::algorithm::trim(line);
cont = (line == "y");
}while(cont);
[caution At this point one potential stumbling block should be mentioned:
test_data<>::insert will create a matrix of test data when there are two
or more parameters, so if we have two parameters and we're asked for
a thousand points on each, that's a ['million test points in total].
Don't say you weren't warned!]
There's just one final step now, and that's to write the test data to file:
std::cout << "Enter name of test data file [default=beta_data.ipp]";
std::getline(std::cin, line);
boost::algorithm::trim(line);
if(line == "")
line = "beta_data.ipp";
std::ofstream ofs(line.c_str());
write_code(ofs, data, "beta_data");
The format of the test data looks something like:
#define SC_(x) static_cast<T>(BOOST_JOIN(x, L))
static const boost::array<boost::array<T, 3>, 1830>
beta_med_data = {
SC_(0.4883005917072296142578125),
SC_(0.4883005917072296142578125),
SC_(3.245912809500479157065104747353807392371),
SC_(3.5808107852935791015625),
SC_(0.4883005917072296142578125),
SC_(1.007653173802923954909901438393379243537),
/* ... lots of rows skipped */
};
The first two values in each row are the input parameters that were passed
to our functor and the last value is the return value from the functor.
Had our functor returned a __tuple rather than a value, then we would have had
one entry for each element in the tuple in addition to the input parameters.
The first #define serves two purposes:
* It reduces the file sizes considerably: all those `static_cast`'s add up to a lot
of bytes otherwise (they are needed to suppress compiler warnings when `T` is
narrower than a `long double`).
* It provides a useful customisation point: for example if we were testing
a user-defined type that has more precision than a `long double` we could change
it to:
[^#define SC_(x) lexical_cast<T>(BOOST_STRINGIZE(x))]
in order to ensure that no truncation of the values occurs prior to conversion
to `T`. Note that this isn't used by default as it's rather hard on the compiler
when the table is large.
[h5 Example 3: Profiling a Continued Fraction for Convergence and Accuracy]
Alternatively, lets say we want to profile a continued fraction for
convergence and error. As an example, we'll use the continued fraction
for the upper incomplete gamma function, the following function object
returns the next a[sub N ] and b[sub N ] of the continued fraction
each time it's invoked:
template <class T>
struct upper_incomplete_gamma_fract
{
private:
T z, a;
int k;
public:
typedef std::pair<T,T> result_type;
upper_incomplete_gamma_fract(T a1, T z1)
: z(z1-a1+1), a(a1), k(0)
{
}
result_type operator()()
{
++k;
z += 2;
return result_type(k * (a - k), z);
}
};
We want to measure both the relative error, and the rate of convergence
of this fraction, so we'll write a functor that returns both as a __tuple:
class test_data will unpack the tuple for us, and create one column of data
for each element in the tuple (in addition to the input parameters):
#include <boost/math/tools/test_data.hpp>
#include <boost/math/tools/test.hpp>
#include <boost/math/special_functions/gamma.hpp>
#include <boost/math/tools/ntl.hpp>
#include <boost/math/tools/tuple.hpp>
template <class T>
struct profile_gamma_fraction
{
typedef ``__tuple``<T, T> result_type;
result_type operator()(T val)
{
using namespace boost::math::tools;
// estimate the true value, using arbitary precision
// arithmetic and NTL::RR:
NTL::RR rval(val);
upper_incomplete_gamma_fract<NTL::RR> f1(rval, rval);
NTL::RR true_val = continued_fraction_a(f1, 1000);
//
// Now get the aproximation at double precision, along with the number of
// iterations required:
boost::uintmax_t iters = std::numeric_limits<boost::uintmax_t>::max();
upper_incomplete_gamma_fract<T> f2(val, val);
T found_val = continued_fraction_a(f2, std::numeric_limits<T>::digits, iters);
//
// Work out the relative error, as measured in units of epsilon:
T err = real_cast<T>(relative_error(true_val, NTL::RR(found_val)) / std::numeric_limits<T>::epsilon());
//
// now just return the results as a tuple:
return boost::math::make_tuple(err, iters);
}
};
Feeding that functor into test_data allows rapid output of csv data,
for whatever type `T` we may be interested in:
int main()
{
using namespace boost::math::tools;
// create an object to hold the data:
test_data<double> data;
// insert 500 points at uniform intervals between just after 0 and 100:
data.insert(profile_gamma_fraction<double>(), make_periodic_param(0.01, 100.0, 100));
// print out in csv format:
write_csv(std::cout, data, ", ");
return 0;
}
This time there's no need to plot a graph, the first few rows are:
a and z, Error/epsilon, Iterations required
0.01, 9723.14, 4726
1.0099, 9.54818, 87
2.0098, 3.84777, 40
3.0097, 0.728358, 25
4.0096, 2.39712, 21
5.0095, 0.233263, 16
So it's pretty clear that this fraction shouldn't be used for small values of /a/ and /z/.
[h4 reference]
Most of this tool has been described already in the examples above, we'll
just add the following notes on the non-member functions:
template <class T>
parameter_info<T> make_random_param(T start_range, T end_range, int n_points);
Tells class test_data to test /n_points/ random values in the range
[start_range,end_range].
template <class T>
parameter_info<T> make_periodic_param(T start_range, T end_range, int n_points);
Tells class test_data to test /n_points/ evenly spaced values in the range
[start_range,end_range].
template <class T>
parameter_info<T> make_power_param(T basis, int start_exponent, int end_exponent);
Tells class test_data to test points of the form ['basis + R * 2[super expon]] for each
/expon/ in the range [start_exponent, end_exponent], and /R/ a random number in \[0.5, 1\].
template <class T>
bool get_user_parameter_info(parameter_info<T>& info, const char* param_name);
Prompts the user for the parameter range and form to use.
Finally, if we don't want the parameter to be included in the output, we can tell
test_data by setting it a "dummy parameter":
parameter_info<double> p = make_random_param(2.0, 5.0, 10);
p.type |= dummy_param;
This is useful when the functor used transforms the parameter in some way
before passing it to the function under test, usually the functor will then
return both the transformed input and the result in a tuple, so there's no
need for the original pseudo-parameter to be included in program output.
[endsect] [/section:test_data Graphing, Profiling, and Generating Test Data for Special Functions]
[/
Copyright 2006 John Maddock and Paul A. Bristow.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
]