math/example/continued_fractions.cpp

151 lines
3.6 KiB
C++

// (C) Copyright John Maddock 2018.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/math/tools/fraction.hpp>
#include <iostream>
#include <complex>
#include <boost/multiprecision/cpp_complex.hpp>
//[golden_ratio_1
template <class T>
struct golden_ratio_fraction
{
typedef T result_type;
result_type operator()()
{
return 1;
}
};
//]
//[cf_tan_fraction
template <class T>
struct tan_fraction
{
private:
T a, b;
public:
tan_fraction(T v)
: a(-v * v), b(-1)
{}
typedef std::pair<T, T> result_type;
std::pair<T, T> operator()()
{
b += 2;
return std::make_pair(a, b);
}
};
//]
//[cf_tan
template <class T>
T tan(T a)
{
tan_fraction<T> fract(a);
return a / continued_fraction_b(fract, std::numeric_limits<T>::epsilon());
}
//]
//[cf_expint_fraction
template <class T>
struct expint_fraction
{
typedef std::pair<T, T> result_type;
expint_fraction(unsigned n_, T z_) : b(z_ + T(n_)), i(-1), n(n_) {}
std::pair<T, T> operator()()
{
std::pair<T, T> result = std::make_pair(-static_cast<T>((i + 1) * (n + i)), b);
b += 2;
++i;
return result;
}
private:
T b;
int i;
unsigned n;
};
//]
//[cf_expint
template <class T>
inline std::complex<T> expint_as_fraction(unsigned n, std::complex<T> const& z)
{
boost::uintmax_t max_iter = 1000;
expint_fraction<std::complex<T> > f(n, z);
std::complex<T> result = boost::math::tools::continued_fraction_b(
f,
std::complex<T>(std::numeric_limits<T>::epsilon()),
max_iter);
result = exp(-z) / result;
return result;
}
//]
//[cf_upper_gamma_fraction
template <class T>
struct upper_incomplete_gamma_fract
{
private:
typedef typename T::value_type scalar_type;
T z, a;
int k;
public:
typedef std::pair<T, T> result_type;
upper_incomplete_gamma_fract(T a1, T z1)
: z(z1 - a1 + scalar_type(1)), a(a1), k(0)
{
}
result_type operator()()
{
++k;
z += scalar_type(2);
return result_type(scalar_type(k) * (a - scalar_type(k)), z);
}
};
//]
//[cf_gamma_Q
template <class T>
inline std::complex<T> gamma_Q_as_fraction(const std::complex<T>& a, const std::complex<T>& z)
{
upper_incomplete_gamma_fract<std::complex<T> > f(a, z);
std::complex<T> eps(std::numeric_limits<T>::epsilon());
return pow(z, a) / (exp(z) *(z - a + T(1) + boost::math::tools::continued_fraction_a(f, eps)));
}
//]
inline boost::multiprecision::cpp_complex_50 gamma_Q_as_fraction(const boost::multiprecision::cpp_complex_50& a, const boost::multiprecision::cpp_complex_50& z)
{
upper_incomplete_gamma_fract<boost::multiprecision::cpp_complex_50> f(a, z);
boost::multiprecision::cpp_complex_50 eps(std::numeric_limits<boost::multiprecision::cpp_complex_50::value_type>::epsilon());
return pow(z, a) / (exp(z) * (z - a + 1 + boost::math::tools::continued_fraction_a(f, eps)));
}
int main()
{
using namespace boost::math::tools;
//[cf_gr
golden_ratio_fraction<double> func;
double gr = continued_fraction_a(
func,
std::numeric_limits<double>::epsilon());
std::cout << "The golden ratio is: " << gr << std::endl;
//]
std::cout << tan(0.5) << std::endl;
std::complex<double> arg(3, 2);
std::cout << expint_as_fraction(5, arg) << std::endl;
std::complex<double> a(3, 3), z(3, 2);
std::cout << gamma_Q_as_fraction(a, z) << std::endl;
boost::multiprecision::cpp_complex_50 am(3, 3), zm(3, 2);
std::cout << gamma_Q_as_fraction(am, zm) << std::endl;
return 0;
}