222 lines
8.1 KiB
C++
222 lines
8.1 KiB
C++
/*
|
|
* Copyright Nick Thompson, 2018
|
|
* Use, modification and distribution are subject to the
|
|
* Boost Software License, Version 1.0. (See accompanying file
|
|
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
*/
|
|
#include <iostream>
|
|
#include <vector>
|
|
#include <string>
|
|
#include <complex>
|
|
#include <bitset>
|
|
#include <boost/assert.hpp>
|
|
#include <boost/multiprecision/cpp_bin_float.hpp>
|
|
#include <boost/math/constants/constants.hpp>
|
|
#include <boost/math/tools/polynomial.hpp>
|
|
#include <boost/math/tools/roots.hpp>
|
|
#include <boost/math/special_functions/binomial.hpp>
|
|
#include <boost/multiprecision/cpp_complex.hpp>
|
|
#include <boost/multiprecision/complex128.hpp>
|
|
#include <boost/math/quadrature/gauss_kronrod.hpp>
|
|
|
|
using std::string;
|
|
using boost::math::tools::polynomial;
|
|
using boost::math::binomial_coefficient;
|
|
using boost::math::tools::schroder_iterate;
|
|
using boost::math::tools::halley_iterate;
|
|
using boost::math::tools::newton_raphson_iterate;
|
|
using boost::math::tools::complex_newton;
|
|
using boost::math::constants::half;
|
|
using boost::math::constants::root_two;
|
|
using boost::math::constants::pi;
|
|
using boost::math::quadrature::gauss_kronrod;
|
|
using boost::multiprecision::cpp_bin_float_100;
|
|
using boost::multiprecision::cpp_complex_100;
|
|
|
|
template<class Complex>
|
|
std::vector<std::pair<Complex, Complex>> find_roots(size_t p)
|
|
{
|
|
// Initialize the polynomial; see Mallat, A Wavelet Tour of Signal Processing, equation 7.96
|
|
BOOST_ASSERT(p>0);
|
|
typedef typename Complex::value_type Real;
|
|
std::vector<Complex> coeffs(p);
|
|
for (size_t k = 0; k < coeffs.size(); ++k)
|
|
{
|
|
coeffs[k] = Complex(binomial_coefficient<Real>(p-1+k, k), 0);
|
|
}
|
|
|
|
polynomial<Complex> P(std::move(coeffs));
|
|
polynomial<Complex> Pcopy = P;
|
|
polynomial<Complex> Pcopy_prime = P.prime();
|
|
auto orig = [&](Complex z) { return std::make_pair<Complex, Complex>(Pcopy(z), Pcopy_prime(z)); };
|
|
|
|
polynomial<Complex> P_prime = P.prime();
|
|
|
|
// Polynomial is of degree p-1.
|
|
|
|
std::vector<Complex> roots(p-1, {std::numeric_limits<Real>::quiet_NaN(),std::numeric_limits<Real>::quiet_NaN()});
|
|
size_t i = 0;
|
|
while(P.size() > 1)
|
|
{
|
|
Complex guess = {0.0, 1.0};
|
|
std::cout << std::setprecision(std::numeric_limits<Real>::digits10+3);
|
|
|
|
auto f = [&](Complex x)->std::pair<Complex, Complex>
|
|
{
|
|
return std::make_pair<Complex, Complex>(P(x), P_prime(x));
|
|
};
|
|
|
|
Complex r = complex_newton(f, guess);
|
|
using std::isnan;
|
|
if(isnan(r.real()))
|
|
{
|
|
int i = 50;
|
|
do {
|
|
// Try a different guess
|
|
guess *= Complex(1.0,-1.0);
|
|
r = complex_newton(f, guess);
|
|
std::cout << "New guess: " << guess << ", result? " << r << std::endl;
|
|
|
|
} while (isnan(r.real()) && i-- > 0);
|
|
|
|
if (isnan(r.real()))
|
|
{
|
|
std::cout << "Polynomial that killed the process: " << P << std::endl;
|
|
throw std::logic_error("Newton iteration did not converge");
|
|
}
|
|
}
|
|
// Refine r with the original function.
|
|
// We only use the polynomial division to ensure we don't get the same root over and over.
|
|
// However, the division induces error which can grow quickly-or slowly! See Numerical Recipes, section 9.5.1.
|
|
r = complex_newton(orig, r);
|
|
if (isnan(r.real()))
|
|
{
|
|
throw std::logic_error("Found a root for the deflated polynomial which is not a root for the original. Indicative of catastrophic numerical error.");
|
|
}
|
|
// Test the root:
|
|
using std::sqrt;
|
|
Real tol = sqrt(sqrt(std::numeric_limits<Real>::epsilon()));
|
|
if (norm(Pcopy(r)) > tol)
|
|
{
|
|
std::cout << "This is a bad root: P" << r << " = " << Pcopy(r) << std::endl;
|
|
std::cout << "Reduced polynomial leading to bad root: " << P << std::endl;
|
|
throw std::logic_error("Donezo.");
|
|
}
|
|
|
|
BOOST_ASSERT(i < roots.size());
|
|
roots[i] = r;
|
|
++i;
|
|
polynomial<Complex> q{-r, {1,0}};
|
|
// This optimization breaks at p = 11. I have no clue why.
|
|
// Unfortunate, because I expect it to be considerably more stable than
|
|
// repeatedly dividing by the complex root.
|
|
/*polynomial<Complex> q;
|
|
if (r.imag() > sqrt(std::numeric_limits<Real>::epsilon()))
|
|
{
|
|
// Then the complex conjugate is also a root:
|
|
using std::conj;
|
|
using std::norm;
|
|
BOOST_ASSERT(i < roots.size());
|
|
roots[i] = conj(r);
|
|
++i;
|
|
q = polynomial<Complex>({{norm(r), 0}, {-2*r.real(),0}, {1,0}});
|
|
}
|
|
else
|
|
{
|
|
// The imaginary part is numerical noise:
|
|
r.imag() = 0;
|
|
q = polynomial<Complex>({-r, {1,0}});
|
|
}*/
|
|
|
|
|
|
auto PR = quotient_remainder(P, q);
|
|
// I should validate that the remainder is small, but . . .
|
|
//std::cout << "Remainder = " << PR.second<< std::endl;
|
|
|
|
P = PR.first;
|
|
P_prime = P.prime();
|
|
}
|
|
|
|
std::vector<std::pair<Complex, Complex>> Qroots(p-1);
|
|
for (size_t i = 0; i < Qroots.size(); ++i)
|
|
{
|
|
Complex y = roots[i];
|
|
Complex z1 = static_cast<Complex>(1) - static_cast<Complex>(2)*y + static_cast<Complex>(2)*sqrt(y*(y-static_cast<Complex>(1)));
|
|
Complex z2 = static_cast<Complex>(1) - static_cast<Complex>(2)*y - static_cast<Complex>(2)*sqrt(y*(y-static_cast<Complex>(1)));
|
|
Qroots[i] = {z1, z2};
|
|
}
|
|
|
|
return Qroots;
|
|
}
|
|
|
|
template<class Complex>
|
|
std::vector<typename Complex::value_type> daubechies_coefficients(std::vector<std::pair<Complex, Complex>> const & Qroots)
|
|
{
|
|
typedef typename Complex::value_type Real;
|
|
size_t p = Qroots.size() + 1;
|
|
// Choose the minimum abs root; see Mallat, discussion just after equation 7.98
|
|
std::vector<Complex> chosen_roots(p-1);
|
|
for (size_t i = 0; i < p - 1; ++i)
|
|
{
|
|
if(norm(Qroots[i].first) <= 1)
|
|
{
|
|
chosen_roots[i] = Qroots[i].first;
|
|
}
|
|
else
|
|
{
|
|
BOOST_ASSERT(norm(Qroots[i].second) <= 1);
|
|
chosen_roots[i] = Qroots[i].second;
|
|
}
|
|
}
|
|
|
|
polynomial<Complex> R{1};
|
|
for (size_t i = 0; i < p-1; ++i)
|
|
{
|
|
Complex ak = chosen_roots[i];
|
|
R *= polynomial<Complex>({-ak/(static_cast<Complex>(1)-ak), static_cast<Complex>(1)/(static_cast<Complex>(1)-ak)});
|
|
}
|
|
polynomial<Complex> a{{half<Real>(), 0}, {half<Real>(),0}};
|
|
polynomial<Complex> poly = root_two<Real>()*pow(a, p)*R;
|
|
std::vector<Complex> result = poly.data();
|
|
// If we reverse, we get the Numerical Recipes and Daubechies convention.
|
|
// If we don't reverse, we get the Pywavelets and Mallat convention.
|
|
// I believe this is because of the sign convention on the DFT, which differs between Daubechies and Mallat.
|
|
// You implement a dot product in Daubechies/NR convention, and a convolution in PyWavelets/Mallat convention.
|
|
// I won't reverse so I can spot check against Pywavelets: http://wavelets.pybytes.com/wavelet/
|
|
//std::reverse(result.begin(), result.end());
|
|
std::vector<Real> h(result.size());
|
|
for (size_t i = 0; i < result.size(); ++i)
|
|
{
|
|
Complex r = result[i];
|
|
BOOST_ASSERT(r.imag() < sqrt(std::numeric_limits<Real>::epsilon()));
|
|
h[i] = r.real();
|
|
}
|
|
|
|
// Quick sanity check: We could check all vanishing moments, but that sum is horribly ill-conditioned too!
|
|
Real sum = 0;
|
|
Real scale = 0;
|
|
for (size_t i = 0; i < h.size(); ++i)
|
|
{
|
|
sum += h[i];
|
|
scale += h[i]*h[i];
|
|
}
|
|
BOOST_ASSERT(abs(scale -1) < sqrt(std::numeric_limits<Real>::epsilon()));
|
|
BOOST_ASSERT(abs(sum - root_two<Real>()) < sqrt(std::numeric_limits<Real>::epsilon()));
|
|
return h;
|
|
}
|
|
|
|
int main()
|
|
{
|
|
typedef boost::multiprecision::cpp_complex<100> Complex;
|
|
for(size_t p = 1; p < 200; ++p)
|
|
{
|
|
auto roots = find_roots<Complex>(p);
|
|
auto h = daubechies_coefficients(roots);
|
|
std::cout << "h_" << p << "[] = {";
|
|
for (auto& x : h) {
|
|
std::cout << x << ", ";
|
|
}
|
|
std::cout << "} // = h_" << p << "\n\n\n\n";
|
|
}
|
|
}
|