281 lines
9.5 KiB
C++
281 lines
9.5 KiB
C++
// Copyright Paul A. Bristow 2016
|
|
// Copyright John Z. Maddock 2016
|
|
|
|
// Distributed under the Boost Software License, Version 1.0.
|
|
// (See accompanying file LICENSE_1_0.txt or
|
|
// copy at http ://www.boost.org/LICENSE_1_0.txt).
|
|
|
|
/*! \brief Graph showing use of Lambert W function to compute current
|
|
through a diode-connected transistor with preset series resistance.
|
|
|
|
\details T. C. Banwell and A. Jayakumar,
|
|
Exact analytical solution of current flow through diode with series resistance,
|
|
Electron Letters, 36(4):291-2 (2000).
|
|
DOI: doi.org/10.1049/el:20000301
|
|
|
|
The current through a diode connected NPN bipolar junction transistor (BJT)
|
|
type 2N2222 (See https://en.wikipedia.org/wiki/2N2222 and
|
|
https://www.fairchildsemi.com/datasheets/PN/PN2222.pdf Datasheet)
|
|
was measured, for a voltage between 0.3 to 1 volt, see Fig 2 for a log plot, showing a knee visible at about 0.6 V.
|
|
|
|
The transistor parameter I sat was estimated to be 25 fA and the ideality factor = 1.0.
|
|
The intrinsic emitter resistance re was estimated from the rsat = 0 data to be 0.3 ohm.
|
|
|
|
The solid curves in Figure 2 are calculated using equation 5 with rsat included with re.
|
|
|
|
http://www3.imperial.ac.uk/pls/portallive/docs/1/7292572.PDF
|
|
|
|
*/
|
|
|
|
#include <boost/math/special_functions/lambert_w.hpp>
|
|
using boost::math::lambert_w0;
|
|
#include <boost/math/special_functions.hpp>
|
|
using boost::math::isfinite;
|
|
#include <boost/svg_plot/svg_2d_plot.hpp>
|
|
using namespace boost::svg;
|
|
|
|
#include <iostream>
|
|
// using std::cout;
|
|
// using std::endl;
|
|
#include <exception>
|
|
#include <stdexcept>
|
|
#include <string>
|
|
#include <array>
|
|
#include <vector>
|
|
#include <utility>
|
|
using std::pair;
|
|
#include <map>
|
|
using std::map;
|
|
#include <set>
|
|
using std::multiset;
|
|
#include <limits>
|
|
using std::numeric_limits;
|
|
#include <cmath> //
|
|
|
|
/*!
|
|
Compute thermal voltage as a function of temperature,
|
|
about 25 mV at room temperature.
|
|
https://en.wikipedia.org/wiki/Boltzmann_constant#Role_in_semiconductor_physics:_the_thermal_voltage
|
|
|
|
\param temperature Temperature (degrees Celsius).
|
|
*/
|
|
const double v_thermal(double temperature)
|
|
{
|
|
BOOST_CONSTEXPR const double boltzmann_k = 1.38e-23; // joules/kelvin.
|
|
BOOST_CONSTEXPR double charge_q = 1.6021766208e-19; // Charge of an electron (columb).
|
|
double temp = +273; // Degrees C to K.
|
|
return boltzmann_k * temp / charge_q;
|
|
} // v_thermal
|
|
|
|
/*!
|
|
Banwell & Jayakumar, equation 2, page 291.
|
|
*/
|
|
double i(double isat, double vd, double vt, double nu)
|
|
{
|
|
double i = isat * (exp(vd / (nu * vt)) - 1);
|
|
return i;
|
|
} //
|
|
|
|
/*!
|
|
Banwell & Jayakumar, Equation 4, page 291.
|
|
i current flow = isat
|
|
v voltage source.
|
|
isat reverse saturation current in equation 4.
|
|
(might implement equation 4 instead of simpler equation 5?).
|
|
vd voltage drop = v - i* rs (equation 1).
|
|
vt thermal voltage, 0.0257025 = 25 mV.
|
|
nu junction ideality factor (default = unity), also known as the emission coefficient.
|
|
re intrinsic emitter resistance, estimated to be 0.3 ohm from low current.
|
|
rsat reverse saturation current
|
|
|
|
\param v Voltage V to compute current I(V).
|
|
\param vt Thermal voltage, for example 0.0257025 = 25 mV, computed from boltzmann_k * temp / charge_q;
|
|
\param rsat Resistance in series with the diode.
|
|
\param re Instrinsic emitter resistance (estimated to be 0.3 ohm from the Rs = 0 data)
|
|
\param isat Reverse saturation current (See equation 2).
|
|
\param nu Ideality factor (default = unity).
|
|
|
|
\returns I amp as function of V volt.
|
|
*/
|
|
|
|
//[lambert_w_diode_graph_2
|
|
double iv(double v, double vt, double rsat, double re, double isat, double nu = 1.)
|
|
{
|
|
// V thermal 0.0257025 = 25 mV
|
|
// was double i = (nu * vt/r) * lambert_w((i0 * r) / (nu * vt)); equ 5.
|
|
|
|
rsat = rsat + re;
|
|
double i = nu * vt / rsat;
|
|
// std::cout << "nu * vt / rsat = " << i << std::endl; // 0.000103223
|
|
|
|
double x = isat * rsat / (nu * vt);
|
|
// std::cout << "isat * rsat / (nu * vt) = " << x << std::endl;
|
|
|
|
double eterm = (v + isat * rsat) / (nu * vt);
|
|
// std::cout << "(v + isat * rsat) / (nu * vt) = " << eterm << std::endl;
|
|
|
|
double e = exp(eterm);
|
|
// std::cout << "exp(eterm) = " << e << std::endl;
|
|
|
|
double w0 = lambert_w0(x * e);
|
|
// std::cout << "w0 = " << w0 << std::endl;
|
|
return i * w0 - isat;
|
|
} // double iv
|
|
|
|
//] [\lambert_w_diode_graph_2]
|
|
|
|
|
|
std::array<double, 5> rss = { 0., 2.18, 10., 51., 249 }; // series resistance (ohm).
|
|
std::array<double, 7> vds = { 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 }; // Diode voltage.
|
|
std::array<double, 7> lni = { -19.65, -15.75, -11.86, -7.97, -4.08, -0.0195, 3.6 }; // ln(current).
|
|
|
|
int main()
|
|
{
|
|
try
|
|
{
|
|
std::cout << "Lambert W diode current example." << std::endl;
|
|
|
|
//[lambert_w_diode_graph_1
|
|
double nu = 1.0; // Assumed ideal.
|
|
double vt = v_thermal(25); // v thermal, Shockley equation, expect about 25 mV at room temperature.
|
|
double boltzmann_k = 1.38e-23; // joules/kelvin
|
|
double temp = 273 + 25;
|
|
double charge_q = 1.6e-19; // column
|
|
vt = boltzmann_k * temp / charge_q;
|
|
std::cout << "V thermal " << vt << std::endl; // V thermal 0.0257025 = 25 mV
|
|
double rsat = 0.;
|
|
double isat = 25.e-15; // 25 fA;
|
|
std::cout << "Isat = " << isat << std::endl;
|
|
double re = 0.3; // Estimated from slope of straight section of graph (equation 6).
|
|
double v = 0.9;
|
|
double icalc = iv(v, vt, 249., re, isat);
|
|
std::cout << "voltage = " << v << ", current = " << icalc << ", " << log(icalc) << std::endl; // voltage = 0.9, current = 0.00108485, -6.82631
|
|
//] [/lambert_w_diode_graph_1]
|
|
|
|
// Plot a few measured data points.
|
|
std::map<const double, double> zero_data; // Extrapolated from slope of measurements with no external resistor.
|
|
zero_data[0.3] = -19.65;
|
|
zero_data[0.4] = -15.75;
|
|
zero_data[0.5] = -11.86;
|
|
zero_data[0.6] = -7.97;
|
|
zero_data[0.7] = -4.08;
|
|
zero_data[0.8] = -0.0195;
|
|
zero_data[0.9] = 3.9;
|
|
|
|
std::map<const double, double> measured_zero_data; // No external series resistor.
|
|
measured_zero_data[0.3] = -19.65;
|
|
measured_zero_data[0.4] = -15.75;
|
|
measured_zero_data[0.5] = -11.86;
|
|
measured_zero_data[0.6] = -7.97;
|
|
measured_zero_data[0.7] = -4.2;
|
|
measured_zero_data[0.72] = -3.5;
|
|
measured_zero_data[0.74] = -2.8;
|
|
measured_zero_data[0.76] = -2.3;
|
|
measured_zero_data[0.78] = -2.0;
|
|
// Measured from Fig 2 as raw data not available.
|
|
|
|
double step = 0.1;
|
|
for (int i = 0; i < vds.size(); i++)
|
|
{
|
|
zero_data[vds[i]] = lni[i];
|
|
std::cout << lni[i] << " " << vds[i] << std::endl;
|
|
}
|
|
step = 0.01;
|
|
|
|
std::map<const double, double> data_2;
|
|
for (double v = 0.3; v < 1.; v += step)
|
|
{
|
|
double current = iv(v, vt, 2., re, isat);
|
|
data_2[v] = log(current);
|
|
// std::cout << "v " << v << ", current = " << current << " log current = " << log(current) << std::endl;
|
|
}
|
|
std::map<const double, double> data_10;
|
|
for (double v = 0.3; v < 1.; v += step)
|
|
{
|
|
double current = iv(v, vt, 10., re, isat);
|
|
data_10[v] = log(current);
|
|
// std::cout << "v " << v << ", current = " << current << " log current = " << log(current) << std::endl;
|
|
}
|
|
std::map<const double, double> data_51;
|
|
for (double v = 0.3; v < 1.; v += step)
|
|
{
|
|
double current = iv(v, vt, 51., re, isat);
|
|
data_51[v] = log(current);
|
|
// std::cout << "v " << v << ", current = " << current << " log current = " << log(current) << std::endl;
|
|
}
|
|
std::map<const double, double> data_249;
|
|
for (double v = 0.3; v < 1.; v += step)
|
|
{
|
|
double current = iv(v, vt, 249., re, isat);
|
|
data_249[v] = log(current);
|
|
// std::cout << "v " << v << ", current = " << current << " log current = " << log(current) << std::endl;
|
|
}
|
|
|
|
svg_2d_plot data_plot;
|
|
|
|
data_plot.title("Diode current versus voltage")
|
|
.x_size(400)
|
|
.y_size(300)
|
|
.legend_on(true)
|
|
.legend_lines(true)
|
|
.x_label("voltage (V)")
|
|
.y_label("log(current) (A)")
|
|
//.x_label_on(true)
|
|
//.y_label_on(true)
|
|
//.xy_values_on(false)
|
|
.x_range(0.25, 1.)
|
|
.y_range(-20., +4.)
|
|
.x_major_interval(0.1)
|
|
.y_major_interval(4)
|
|
.x_major_grid_on(true)
|
|
.y_major_grid_on(true)
|
|
//.x_values_on(true)
|
|
//.y_values_on(true)
|
|
.y_values_rotation(horizontal)
|
|
//.plot_window_on(true)
|
|
.x_values_precision(3)
|
|
.y_values_precision(3)
|
|
.coord_precision(4) // Needed to avoid stepping on curves.
|
|
.copyright_holder("Paul A. Bristow")
|
|
.copyright_date("2016")
|
|
//.background_border_color(black);
|
|
;
|
|
|
|
// ₀ = subscript zero.
|
|
data_plot.plot(zero_data, "I₀(V)").fill_color(lightgray).shape(none).size(3).line_on(true).line_width(0.5);
|
|
data_plot.plot(measured_zero_data, "Rs=0 Ω").fill_color(lightgray).shape(square).size(3).line_on(true).line_width(0.5);
|
|
data_plot.plot(data_2, "Rs=2 Ω").line_color(blue).shape(none).line_on(true).bezier_on(false).line_width(1);
|
|
data_plot.plot(data_10, "Rs=10 Ω").line_color(purple).shape(none).line_on(true).bezier_on(false).line_width(1);
|
|
data_plot.plot(data_51, "Rs=51 Ω").line_color(green).shape(none).line_on(true).line_width(1);
|
|
data_plot.plot(data_249, "Rs=249 Ω").line_color(red).shape(none).line_on(true).line_width(1);
|
|
data_plot.write("./diode_iv_plot");
|
|
|
|
// bezier_on(true);
|
|
}
|
|
catch (std::exception& ex)
|
|
{
|
|
std::cout << ex.what() << std::endl;
|
|
}
|
|
|
|
|
|
} // int main()
|
|
|
|
/*
|
|
|
|
//[lambert_w_output_1
|
|
Output:
|
|
Lambert W diode current example.
|
|
V thermal 0.0257025
|
|
Isat = 2.5e-14
|
|
voltage = 0.9, current = 0.00108485, -6.82631
|
|
-19.65 0.3
|
|
-15.75 0.4
|
|
-11.86 0.5
|
|
-7.97 0.6
|
|
-4.08 0.7
|
|
-0.0195 0.8
|
|
3.6 0.9
|
|
|
|
//] [/lambert_w_output_1]
|
|
*/
|