math/example/lambert_w_graph.cpp

287 lines
8.7 KiB
C++

// Copyright Paul A. Bristow 2017
// Copyright John Z. Maddock 2017
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or
// copy at http ://www.boost.org/LICENSE_1_0.txt).
/*! \brief Graph showing use of Lambert W function.
\details
Both Lambert W0 and W-1 branches can be shown on one graph.
But useful to have another graph for larger values of argument z.
Need two separate graphs for Lambert W0 and -1 prime because
the sensible ranges and axes are too different.
One would get too small LambertW0 in top right and W-1 in bottom left.
*/
#include <boost/math/special_functions/lambert_w.hpp>
using boost::math::lambert_w0;
using boost::math::lambert_wm1;
using boost::math::lambert_w0_prime;
using boost::math::lambert_wm1_prime;
#include <boost/math/special_functions.hpp>
using boost::math::isfinite;
#include <boost/svg_plot/svg_2d_plot.hpp>
using namespace boost::svg;
#include <boost/svg_plot/show_2d_settings.hpp>
using boost::svg::show_2d_plot_settings;
#include <iostream>
// using std::cout;
// using std::endl;
#include <exception>
#include <stdexcept>
#include <string>
#include <array>
#include <vector>
#include <utility>
using std::pair;
#include <map>
using std::map;
#include <set>
using std::multiset;
#include <limits>
using std::numeric_limits;
#include <cmath> //
/*!
*/
int main()
{
try
{
std::cout << "Lambert W graph example." << std::endl;
//[lambert_w_graph_1
//] [/lambert_w_graph_1]
{
std::map<const double, double> wm1s; // Lambert W-1 branch values.
std::map<const double, double> w0s; // Lambert W0 branch values.
std::cout.precision(std::numeric_limits<double>::max_digits10);
int count = 0;
for (double z = -0.36787944117144232159552377016146086744581113103176804; z < 2.8; z += 0.001)
{
double w0 = lambert_w0(z);
w0s[z] = w0;
// std::cout << "z " << z << ", w = " << w0 << std::endl;
count++;
}
std::cout << "points " << count << std::endl;
count = 0;
for (double z = -0.3678794411714423215955237701614608727; z < -0.001; z += 0.001)
{
double wm1 = lambert_wm1(z);
wm1s[z] = wm1;
count++;
}
std::cout << "points " << count << std::endl;
svg_2d_plot data_plot;
data_plot.title("Lambert W function.")
.x_size(400)
.y_size(300)
.legend_on(true)
.legend_lines(true)
.x_label("z")
.y_label("W")
.x_range(-1, 3.)
.y_range(-4., +1.)
.x_major_interval(1.)
.y_major_interval(1.)
.x_major_grid_on(true)
.y_major_grid_on(true)
//.x_values_on(true)
//.y_values_on(true)
.y_values_rotation(horizontal)
//.plot_window_on(true)
.x_values_precision(3)
.y_values_precision(3)
.coord_precision(4) // Needed to avoid stepping on curves.
.copyright_holder("Paul A. Bristow")
.copyright_date("2018")
//.background_border_color(black);
;
data_plot.plot(w0s, "W0 branch").line_color(red).shape(none).line_on(true).bezier_on(false).line_width(1);
data_plot.plot(wm1s, "W-1 branch").line_color(blue).shape(none).line_on(true).bezier_on(false).line_width(1);
data_plot.write("./lambert_w_graph");
show_2d_plot_settings(data_plot); // For plot diagnosis only.
} // small z Lambert W
{ // bigger argument z Lambert W
std::map<const double, double> w0s_big; // Lambert W0 branch values for large z and W.
std::map<const double, double> wm1s_big; // Lambert W-1 branch values for small z and large -W.
int count = 0;
for (double z = -0.3678794411714423215955237701614608727; z < 10000.; z += 50.)
{
double w0 = lambert_w0(z);
w0s_big[z] = w0;
count++;
}
std::cout << "points " << count << std::endl;
count = 0;
for (double z = -0.3678794411714423215955237701614608727; z < -0.001; z += 0.001)
{
double wm1 = lambert_wm1(z);
wm1s_big[z] = wm1;
count++;
}
std::cout << "Lambert W0 large z argument points = " << count << std::endl;
svg_2d_plot data_plot2;
data_plot2.title("Lambert W0 function for larger z.")
.x_size(400)
.y_size(300)
.legend_on(false)
.x_label("z")
.y_label("W")
//.x_label_on(true)
//.y_label_on(true)
//.xy_values_on(false)
.x_range(-1, 10000.)
.y_range(-1., +8.)
.x_major_interval(2000.)
.y_major_interval(1.)
.x_major_grid_on(true)
.y_major_grid_on(true)
//.x_values_on(true)
//.y_values_on(true)
.y_values_rotation(horizontal)
//.plot_window_on(true)
.x_values_precision(3)
.y_values_precision(3)
.coord_precision(4) // Needed to avoid stepping on curves.
.copyright_holder("Paul A. Bristow")
.copyright_date("2018")
//.background_border_color(black);
;
data_plot2.plot(w0s_big, "W0 branch").line_color(red).shape(none).line_on(true).bezier_on(false).line_width(1);
// data_plot2.plot(wm1s_big, "W-1 branch").line_color(blue).shape(none).line_on(true).bezier_on(false).line_width(1);
// This wouldn't show anything useful.
data_plot2.write("./lambert_w_graph_big_w");
} // Big argument z Lambert W
{ // Lambert W0 Derivative plots
// std::map<const double, double> wm1ps; // Lambert W-1 prime branch values.
std::map<const double, double> w0ps; // Lambert W0 prime branch values.
std::cout.precision(std::numeric_limits<double>::max_digits10);
int count = 0;
for (double z = -0.36; z < 3.; z += 0.001)
{
double w0p = lambert_w0_prime(z);
w0ps[z] = w0p;
// std::cout << "z " << z << ", w0 = " << w0 << std::endl;
count++;
}
std::cout << "points " << count << std::endl;
//count = 0;
//for (double z = -0.36; z < -0.1; z += 0.001)
//{
// double wm1p = lambert_wm1_prime(z);
// std::cout << "z " << z << ", w-1 = " << wm1p << std::endl;
// wm1ps[z] = wm1p;
// count++;
//}
//std::cout << "points " << count << std::endl;
svg_2d_plot data_plotp;
data_plotp.title("Lambert W0 prime function.")
.x_size(400)
.y_size(300)
.legend_on(false)
.x_label("z")
.y_label("W0'")
.x_range(-0.3, +1.)
.y_range(0., +5.)
.x_major_interval(0.2)
.y_major_interval(2.)
.x_major_grid_on(true)
.y_major_grid_on(true)
.y_values_rotation(horizontal)
.x_values_precision(3)
.y_values_precision(3)
.coord_precision(4) // Needed to avoid stepping on curves.
.copyright_holder("Paul A. Bristow")
.copyright_date("2018")
;
// derivative of N[productlog(0, x), 55] at x=0 to 10
// Plot[D[N[ProductLog[0, x], 55], x], {x, 0, 10}]
// Plot[ProductLog[x]/(x + x ProductLog[x]), {x, 0, 10}]
data_plotp.plot(w0ps, "W0 prime branch").line_color(red).shape(none).line_on(true).bezier_on(false).line_width(1);
data_plotp.write("./lambert_w0_prime_graph");
} // Lambert W0 Derivative plots
{ // Lambert Wm1 Derivative plots
std::map<const double, double> wm1ps; // Lambert W-1 prime branch values.
std::cout.precision(std::numeric_limits<double>::max_digits10);
int count = 0;
for (double z = -0.3678; z < -0.00001; z += 0.001)
{
double wm1p = lambert_wm1_prime(z);
// std::cout << "z " << z << ", w-1 = " << wm1p << std::endl;
wm1ps[z] = wm1p;
count++;
}
std::cout << "Lambert W-1 prime points = " << count << std::endl;
svg_2d_plot data_plotp;
data_plotp.title("Lambert W-1 prime function.")
.x_size(400)
.y_size(300)
.legend_on(false)
.x_label("z")
.y_label("W-1'")
.x_range(-0.4, +0.01)
.x_major_interval(0.1)
.y_range(-20., -5.)
.y_major_interval(5.)
.x_major_grid_on(true)
.y_major_grid_on(true)
.y_values_rotation(horizontal)
.x_values_precision(3)
.y_values_precision(3)
.coord_precision(4) // Needed to avoid stepping on curves.
.copyright_holder("Paul A. Bristow")
.copyright_date("2018")
;
// derivative of N[productlog(0, x), 55] at x=0 to 10
// Plot[D[N[ProductLog[0, x], 55], x], {x, 0, 10}]
// Plot[ProductLog[x]/(x + x ProductLog[x]), {x, 0, 10}]
data_plotp.plot(wm1ps, "W-1 prime branch").line_color(blue).shape(none).line_on(true).bezier_on(false).line_width(1);
data_plotp.write("./lambert_wm1_prime_graph");
} // Lambert W-1 prime graph
} // try
catch (std::exception& ex)
{
std::cout << ex.what() << std::endl;
}
} // int main()
/*
//[lambert_w_graph_1_output
//] [/lambert_w_graph_1_output]
*/