57cba0eef4
[SVN r84143]
210 lines
6.1 KiB
C++
210 lines
6.1 KiB
C++
// neg_binomial_sample_sizes.cpp
|
|
|
|
// Copyright John Maddock 2006
|
|
// Copyright Paul A. Bristow 2007, 2010
|
|
|
|
// Use, modification and distribution are subject to the
|
|
// Boost Software License, Version 1.0.
|
|
// (See accompanying file LICENSE_1_0.txt
|
|
// or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
#include <boost/math/distributions/negative_binomial.hpp>
|
|
using boost::math::negative_binomial;
|
|
|
|
// Default RealType is double so this permits use of:
|
|
double find_minimum_number_of_trials(
|
|
double k, // number of failures (events), k >= 0.
|
|
double p, // fraction of trails for which event occurs, 0 <= p <= 1.
|
|
double probability); // probability threshold, 0 <= probability <= 1.
|
|
|
|
#include <iostream>
|
|
using std::cout;
|
|
using std::endl;
|
|
using std::fixed;
|
|
using std::right;
|
|
#include <iomanip>
|
|
using std::setprecision;
|
|
using std::setw;
|
|
|
|
//[neg_binomial_sample_sizes
|
|
|
|
/*`
|
|
It centres around a routine that prints out a table of
|
|
minimum sample sizes (number of trials) for various probability thresholds:
|
|
*/
|
|
void find_number_of_trials(double failures, double p);
|
|
/*`
|
|
First define a table of significance levels: these are the maximum
|
|
acceptable probability that /failure/ or fewer events will be observed.
|
|
*/
|
|
double alpha[] = { 0.5, 0.25, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001 };
|
|
/*`
|
|
Confidence value as % is (1 - alpha) * 100, so alpha 0.05 == 95% confidence
|
|
that the desired number of failures will be observed.
|
|
The values range from a very low 0.5 or 50% confidence up to an extremely high
|
|
confidence of 99.999.
|
|
|
|
Much of the rest of the program is pretty-printing, the important part
|
|
is in the calculation of minimum number of trials required for each
|
|
value of alpha using:
|
|
|
|
(int)ceil(negative_binomial::find_minimum_number_of_trials(failures, p, alpha[i]);
|
|
|
|
find_minimum_number_of_trials returns a double,
|
|
so `ceil` rounds this up to ensure we have an integral minimum number of trials.
|
|
*/
|
|
|
|
void find_number_of_trials(double failures, double p)
|
|
{
|
|
// trials = number of trials
|
|
// failures = number of failures before achieving required success(es).
|
|
// p = success fraction (0 <= p <= 1.).
|
|
//
|
|
// Calculate how many trials we need to ensure the
|
|
// required number of failures DOES exceed "failures".
|
|
|
|
cout << "\n""Target number of failures = " << (int)failures;
|
|
cout << ", Success fraction = " << fixed << setprecision(1) << 100 * p << "%" << endl;
|
|
// Print table header:
|
|
cout << "____________________________\n"
|
|
"Confidence Min Number\n"
|
|
" Value (%) Of Trials \n"
|
|
"____________________________\n";
|
|
// Now print out the data for the alpha table values.
|
|
for(unsigned i = 0; i < sizeof(alpha)/sizeof(alpha[0]); ++i)
|
|
{ // Confidence values %:
|
|
cout << fixed << setprecision(3) << setw(10) << right << 100 * (1-alpha[i]) << " "
|
|
// find_minimum_number_of_trials
|
|
<< setw(6) << right
|
|
<< (int)ceil(negative_binomial::find_minimum_number_of_trials(failures, p, alpha[i]))
|
|
<< endl;
|
|
}
|
|
cout << endl;
|
|
} // void find_number_of_trials(double failures, double p)
|
|
|
|
/*` finally we can produce some tables of minimum trials for the chosen confidence levels:
|
|
*/
|
|
|
|
int main()
|
|
{
|
|
find_number_of_trials(5, 0.5);
|
|
find_number_of_trials(50, 0.5);
|
|
find_number_of_trials(500, 0.5);
|
|
find_number_of_trials(50, 0.1);
|
|
find_number_of_trials(500, 0.1);
|
|
find_number_of_trials(5, 0.9);
|
|
|
|
return 0;
|
|
} // int main()
|
|
|
|
//] [/neg_binomial_sample_sizes.cpp end of Quickbook in C++ markup]
|
|
|
|
/*
|
|
|
|
Output is:
|
|
Target number of failures = 5, Success fraction = 50.0%
|
|
____________________________
|
|
Confidence Min Number
|
|
Value (%) Of Trials
|
|
____________________________
|
|
50.000 11
|
|
75.000 14
|
|
90.000 17
|
|
95.000 18
|
|
99.000 22
|
|
99.900 27
|
|
99.990 31
|
|
99.999 36
|
|
|
|
|
|
Target number of failures = 50, Success fraction = 50.0%
|
|
____________________________
|
|
Confidence Min Number
|
|
Value (%) Of Trials
|
|
____________________________
|
|
50.000 101
|
|
75.000 109
|
|
90.000 115
|
|
95.000 119
|
|
99.000 128
|
|
99.900 137
|
|
99.990 146
|
|
99.999 154
|
|
|
|
|
|
Target number of failures = 500, Success fraction = 50.0%
|
|
____________________________
|
|
Confidence Min Number
|
|
Value (%) Of Trials
|
|
____________________________
|
|
50.000 1001
|
|
75.000 1023
|
|
90.000 1043
|
|
95.000 1055
|
|
99.000 1078
|
|
99.900 1104
|
|
99.990 1126
|
|
99.999 1146
|
|
|
|
|
|
Target number of failures = 50, Success fraction = 10.0%
|
|
____________________________
|
|
Confidence Min Number
|
|
Value (%) Of Trials
|
|
____________________________
|
|
50.000 56
|
|
75.000 58
|
|
90.000 60
|
|
95.000 61
|
|
99.000 63
|
|
99.900 66
|
|
99.990 68
|
|
99.999 71
|
|
|
|
|
|
Target number of failures = 500, Success fraction = 10.0%
|
|
____________________________
|
|
Confidence Min Number
|
|
Value (%) Of Trials
|
|
____________________________
|
|
50.000 556
|
|
75.000 562
|
|
90.000 567
|
|
95.000 570
|
|
99.000 576
|
|
99.900 583
|
|
99.990 588
|
|
99.999 594
|
|
|
|
|
|
Target number of failures = 5, Success fraction = 90.0%
|
|
____________________________
|
|
Confidence Min Number
|
|
Value (%) Of Trials
|
|
____________________________
|
|
50.000 57
|
|
75.000 73
|
|
90.000 91
|
|
95.000 103
|
|
99.000 127
|
|
99.900 159
|
|
99.990 189
|
|
99.999 217
|
|
|
|
|
|
Target number of failures = 5, Success fraction = 95.0%
|
|
____________________________
|
|
Confidence Min Number
|
|
Value (%) Of Trials
|
|
____________________________
|
|
50.000 114
|
|
75.000 148
|
|
90.000 184
|
|
95.000 208
|
|
99.000 259
|
|
99.900 324
|
|
99.990 384
|
|
99.999 442
|
|
|
|
*/
|