879 lines
31 KiB
C++
879 lines
31 KiB
C++
// Copyright Paul A. Bristow 2015
|
|
|
|
// Use, modification and distribution are subject to the
|
|
// Boost Software License, Version 1.0.
|
|
// (See accompanying file LICENSE_1_0.txt
|
|
// or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
// Comparison of finding roots using TOMS748, Newton-Raphson, Halley & Schroder algorithms.
|
|
// root_n_finding_algorithms.cpp Generalised for nth root version.
|
|
|
|
// http://en.wikipedia.org/wiki/Cube_root
|
|
|
|
// Note that this file contains Quickbook mark-up as well as code
|
|
// and comments, don't change any of the special comment mark-ups!
|
|
// This program also writes files in Quickbook tables mark-up format.
|
|
|
|
#include <boost/cstdlib.hpp>
|
|
#include <boost/config.hpp>
|
|
#include <boost/array.hpp>
|
|
#include <boost/type_traits/is_floating_point.hpp>
|
|
#include <boost/math/tools/roots.hpp>
|
|
#include <boost/math/special_functions/ellint_1.hpp>
|
|
#include <boost/math/special_functions/ellint_2.hpp>
|
|
|
|
//using boost::math::policies::policy;
|
|
//using boost::math::tools::eps_tolerance; // Binary functor for specified number of bits.
|
|
//using boost::math::tools::bracket_and_solve_root;
|
|
//using boost::math::tools::toms748_solve;
|
|
//using boost::math::tools::halley_iterate;
|
|
//using boost::math::tools::newton_raphson_iterate;
|
|
//using boost::math::tools::schroder_iterate;
|
|
|
|
#include <boost/math/special_functions/next.hpp> // For float_distance.
|
|
|
|
#include <boost/multiprecision/cpp_bin_float.hpp> // is binary.
|
|
using boost::multiprecision::cpp_bin_float_100;
|
|
using boost::multiprecision::cpp_bin_float_50;
|
|
|
|
#include <boost/timer/timer.hpp>
|
|
#include <boost/system/error_code.hpp>
|
|
#include <boost/preprocessor/stringize.hpp>
|
|
|
|
// STL
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
#include <string>
|
|
#include <vector>
|
|
#include <limits>
|
|
#include <fstream> // std::ofstream
|
|
#include <cmath>
|
|
#include <typeinfo> // for type name using typid(thingy).name();
|
|
|
|
#ifdef __FILE__
|
|
std::string sourcefilename = __FILE__;
|
|
#else
|
|
std::string sourcefilename("");
|
|
#endif
|
|
|
|
std::string chop_last(std::string s)
|
|
{
|
|
std::string::size_type pos = s.find_last_of("\\/");
|
|
if(pos != std::string::npos)
|
|
s.erase(pos);
|
|
else if(s.empty())
|
|
abort();
|
|
else
|
|
s.erase();
|
|
return s;
|
|
}
|
|
|
|
std::string make_root()
|
|
{
|
|
std::string result;
|
|
if(sourcefilename.find_first_of(":") != std::string::npos)
|
|
{
|
|
result = chop_last(sourcefilename); // lose filename part
|
|
result = chop_last(result); // lose /example/
|
|
result = chop_last(result); // lose /math/
|
|
result = chop_last(result); // lose /libs/
|
|
}
|
|
else
|
|
{
|
|
result = chop_last(sourcefilename); // lose filename part
|
|
if(result.empty())
|
|
result = ".";
|
|
result += "/../../..";
|
|
}
|
|
return result;
|
|
}
|
|
|
|
std::string short_file_name(std::string s)
|
|
{
|
|
std::string::size_type pos = s.find_last_of("\\/");
|
|
if(pos != std::string::npos)
|
|
s.erase(0, pos + 1);
|
|
return s;
|
|
}
|
|
|
|
std::string boost_root = make_root();
|
|
|
|
|
|
std::string fp_hardware; // Any hardware features like SEE or AVX
|
|
|
|
const std::string roots_name = "libs/math/doc/roots/";
|
|
|
|
const std::string full_roots_name(boost_root + "/libs/math/doc/roots/");
|
|
|
|
const std::size_t nooftypes = 4;
|
|
const std::size_t noofalgos = 4;
|
|
|
|
double digits_accuracy = 1.0; // 1 == maximum possible accuracy.
|
|
|
|
std::stringstream ss;
|
|
|
|
std::ofstream fout;
|
|
|
|
std::vector<std::string> algo_names =
|
|
{
|
|
"TOMS748", "Newton", "Halley", "Schr'''ö'''der"
|
|
};
|
|
|
|
std::vector<std::string> names =
|
|
{
|
|
"float", "double", "long double", "cpp_bin_float50"
|
|
};
|
|
|
|
uintmax_t iters; // Global as value of iterations is not returned.
|
|
|
|
struct root_info
|
|
{ // for a floating-point type, float, double ...
|
|
std::size_t max_digits10; // for type.
|
|
std::string full_typename; // for type from type_id.name().
|
|
std::string short_typename; // for type "float", "double", "cpp_bin_float_50" ....
|
|
std::size_t bin_digits; // binary in floating-point type numeric_limits<T>::digits;
|
|
int get_digits; // fraction of maximum possible accuracy required.
|
|
// = digits * digits_accuracy
|
|
// Vector of values (4) for each algorithm, TOMS748, Newton, Halley & Schroder.
|
|
//std::vector< boost::int_least64_t> times; converted to int.
|
|
std::vector<int> times; // arbirary units (ticks).
|
|
//boost::int_least64_t min_time = std::numeric_limits<boost::int_least64_t>::max(); // Used to normalize times (as int).
|
|
std::vector<double> normed_times;
|
|
int min_time = (std::numeric_limits<int>::max)(); // Used to normalize times.
|
|
std::vector<uintmax_t> iterations;
|
|
std::vector<long int> distances;
|
|
std::vector<cpp_bin_float_100> full_results;
|
|
}; // struct root_info
|
|
|
|
std::vector<root_info> root_infos; // One element for each floating-point type used.
|
|
|
|
inline std::string build_test_name(const char* type_name, const char* test_name)
|
|
{
|
|
std::string result(BOOST_COMPILER);
|
|
result += "|";
|
|
result += BOOST_STDLIB;
|
|
result += "|";
|
|
result += BOOST_PLATFORM;
|
|
result += "|";
|
|
result += type_name;
|
|
result += "|";
|
|
result += test_name;
|
|
#if defined(_DEBUG) || !defined(NDEBUG)
|
|
result += "|";
|
|
result += " debug";
|
|
#else
|
|
result += "|";
|
|
result += " release";
|
|
#endif
|
|
result += "|";
|
|
return result;
|
|
} // std::string build_test_name
|
|
|
|
// Algorithms //////////////////////////////////////////////
|
|
|
|
// No derivatives - using TOMS748 internally.
|
|
//[elliptic_noderv_func
|
|
template <typename T = double>
|
|
struct elliptic_root_functor_noderiv
|
|
{ // Nth root of x using only function - no derivatives.
|
|
elliptic_root_functor_noderiv(T const& arc, T const& radius) : m_arc(arc), m_radius(radius)
|
|
{ // Constructor just stores value a to find root of.
|
|
}
|
|
T operator()(T const& x)
|
|
{
|
|
using std::sqrt;
|
|
// return the difference between required arc-length, and the calculated arc-length for an
|
|
// ellipse with radii m_radius and x:
|
|
T a = (std::max)(m_radius, x);
|
|
T b = (std::min)(m_radius, x);
|
|
T k = sqrt(1 - b * b / (a * a));
|
|
return 4 * a * boost::math::ellint_2(k) - m_arc;
|
|
}
|
|
private:
|
|
T m_arc; // length of arc.
|
|
T m_radius; // one of the two radii of the ellipse
|
|
}; // template <class T> struct elliptic_root_functor_noderiv
|
|
//]
|
|
//[elliptic_root_noderiv
|
|
template <class T = double>
|
|
T elliptic_root_noderiv(T radius, T arc)
|
|
{ // return the other radius of an ellipse, given one radii and the arc-length
|
|
using namespace std; // Help ADL of std functions.
|
|
using namespace boost::math::tools; // For bracket_and_solve_root.
|
|
|
|
T guess = sqrt(arc * arc / 16 - radius * radius);
|
|
T factor = 1.2; // How big steps to take when searching.
|
|
|
|
const boost::uintmax_t maxit = 50; // Limit to maximum iterations.
|
|
boost::uintmax_t it = maxit; // Initally our chosen max iterations, but updated with actual.
|
|
bool is_rising = true; // arc-length increases if one radii increases, so function is rising
|
|
// Define a termination condition, stop when nearly all digits are correct, but allow for
|
|
// the fact that we are returning a range, and must have some inaccuracy in the elliptic integral:
|
|
eps_tolerance<T> tol(std::numeric_limits<T>::digits - 2);
|
|
// Call bracket_and_solve_root to find the solution, note that this is a rising function:
|
|
std::pair<T, T> r = bracket_and_solve_root(elliptic_root_functor_noderiv<T>(arc, radius), guess, factor, is_rising, tol, it);
|
|
//<-
|
|
iters = it;
|
|
//->
|
|
// Result is midway between the endpoints of the range:
|
|
return r.first + (r.second - r.first) / 2;
|
|
} // template <class T> T elliptic_root_noderiv(T x)
|
|
//]
|
|
// Using 1st derivative only Newton-Raphson
|
|
//[elliptic_1deriv_func
|
|
template <class T = double>
|
|
struct elliptic_root_functor_1deriv
|
|
{ // Functor also returning 1st derviative.
|
|
BOOST_STATIC_ASSERT_MSG(boost::is_integral<T>::value == false, "Only floating-point type types can be used!");
|
|
|
|
elliptic_root_functor_1deriv(T const& arc, T const& radius) : m_arc(arc), m_radius(radius)
|
|
{ // Constructor just stores value a to find root of.
|
|
}
|
|
std::pair<T, T> operator()(T const& x)
|
|
{
|
|
using std::sqrt;
|
|
// Return the difference between required arc-length, and the calculated arc-length for an
|
|
// ellipse with radii m_radius and x, plus it's derivative.
|
|
// See http://www.wolframalpha.com/input/?i=d%2Fda+[4+*+a+*+EllipticE%281+-+b^2%2Fa^2%29]
|
|
// We require two elliptic integral calls, but from these we can calculate both
|
|
// the function and it's derivative:
|
|
T a = (std::max)(m_radius, x);
|
|
T b = (std::min)(m_radius, x);
|
|
T a2 = a * a;
|
|
T b2 = b * b;
|
|
T k = sqrt(1 - b2 / a2);
|
|
T Ek = boost::math::ellint_2(k);
|
|
T Kk = boost::math::ellint_1(k);
|
|
T fx = 4 * a * Ek - m_arc;
|
|
T dfx = 4 * (a2 * Ek - b2 * Kk) / (a2 - b2);
|
|
return std::make_pair(fx, dfx);
|
|
}
|
|
private:
|
|
T m_arc; // length of arc.
|
|
T m_radius; // one of the two radii of the ellipse
|
|
}; // struct elliptic_root__functor_1deriv
|
|
//]
|
|
//[elliptic_1deriv
|
|
template <class T = double>
|
|
T elliptic_root_1deriv(T radius, T arc)
|
|
{
|
|
using namespace std; // Help ADL of std functions.
|
|
using namespace boost::math::tools; // For newton_raphson_iterate.
|
|
|
|
BOOST_STATIC_ASSERT_MSG(boost::is_integral<T>::value == false, "Only floating-point type types can be used!");
|
|
|
|
T guess = sqrt(arc * arc / 16 - radius * radius);
|
|
T min = 0; // Minimum possible value is zero.
|
|
T max = arc; // Maximum possible value is the arc length.
|
|
|
|
// Accuracy doubles at each step, so stop when just over half of the digits are
|
|
// correct, and rely on that step to polish off the remainder:
|
|
int get_digits = static_cast<int>(std::numeric_limits<T>::digits * 0.6);
|
|
const boost::uintmax_t maxit = 20;
|
|
boost::uintmax_t it = maxit;
|
|
T result = newton_raphson_iterate(elliptic_root_functor_1deriv<T>(arc, radius), guess, min, max, get_digits, it);
|
|
//<-
|
|
iters = it;
|
|
//->
|
|
return result;
|
|
} // T elliptic_root_1_deriv Newton-Raphson
|
|
//]
|
|
|
|
// Using 1st and 2nd derivatives with Halley algorithm.
|
|
//[elliptic_2deriv_func
|
|
template <class T = double>
|
|
struct elliptic_root_functor_2deriv
|
|
{ // Functor returning both 1st and 2nd derivatives.
|
|
BOOST_STATIC_ASSERT_MSG(boost::is_integral<T>::value == false, "Only floating-point type types can be used!");
|
|
|
|
elliptic_root_functor_2deriv(T const& arc, T const& radius) : m_arc(arc), m_radius(radius) {}
|
|
std::tuple<T, T, T> operator()(T const& x)
|
|
{
|
|
using std::sqrt;
|
|
// Return the difference between required arc-length, and the calculated arc-length for an
|
|
// ellipse with radii m_radius and x, plus it's derivative.
|
|
// See http://www.wolframalpha.com/input/?i=d^2%2Fda^2+[4+*+a+*+EllipticE%281+-+b^2%2Fa^2%29]
|
|
// for the second derivative.
|
|
T a = (std::max)(m_radius, x);
|
|
T b = (std::min)(m_radius, x);
|
|
T a2 = a * a;
|
|
T b2 = b * b;
|
|
T k = sqrt(1 - b2 / a2);
|
|
T Ek = boost::math::ellint_2(k);
|
|
T Kk = boost::math::ellint_1(k);
|
|
T fx = 4 * a * Ek - m_arc;
|
|
T dfx = 4 * (a2 * Ek - b2 * Kk) / (a2 - b2);
|
|
T dfx2 = 4 * b2 * ((a2 + b2) * Kk - 2 * a2 * Ek) / (a * (a2 - b2) * (a2 - b2));
|
|
return std::make_tuple(fx, dfx, dfx2);
|
|
}
|
|
private:
|
|
T m_arc; // length of arc.
|
|
T m_radius; // one of the two radii of the ellipse
|
|
};
|
|
//]
|
|
//[elliptic_2deriv
|
|
template <class T = double>
|
|
T elliptic_root_2deriv(T radius, T arc)
|
|
{
|
|
using namespace std; // Help ADL of std functions.
|
|
using namespace boost::math::tools; // For halley_iterate.
|
|
|
|
BOOST_STATIC_ASSERT_MSG(boost::is_integral<T>::value == false, "Only floating-point type types can be used!");
|
|
|
|
T guess = sqrt(arc * arc / 16 - radius * radius);
|
|
T min = 0; // Minimum possible value is zero.
|
|
T max = arc; // radius can't be larger than the arc length.
|
|
|
|
// Accuracy triples at each step, so stop when just over one-third of the digits
|
|
// are correct, and the last iteration will polish off the remaining digits:
|
|
int get_digits = static_cast<int>(std::numeric_limits<T>::digits * 0.4);
|
|
const boost::uintmax_t maxit = 20;
|
|
boost::uintmax_t it = maxit;
|
|
T result = halley_iterate(elliptic_root_functor_2deriv<T>(arc, radius), guess, min, max, get_digits, it);
|
|
//<-
|
|
iters = it;
|
|
//->
|
|
return result;
|
|
} // nth_2deriv Halley
|
|
//]
|
|
// Using 1st and 2nd derivatives using Schroder algorithm.
|
|
|
|
template <class T = double>
|
|
T elliptic_root_2deriv_s(T arc, T radius)
|
|
{ // return nth root of x using 1st and 2nd derivatives and Schroder.
|
|
|
|
using namespace std; // Help ADL of std functions.
|
|
using namespace boost::math::tools; // For schroder_iterate.
|
|
|
|
BOOST_STATIC_ASSERT_MSG(boost::is_integral<T>::value == false, "Only floating-point type types can be used!");
|
|
|
|
T guess = sqrt(arc * arc / 16 - radius * radius);
|
|
T min = 0; // Minimum possible value is zero.
|
|
T max = arc; // radius can't be larger than the arc length.
|
|
|
|
int digits = std::numeric_limits<T>::digits; // Maximum possible binary digits accuracy for type T.
|
|
int get_digits = static_cast<int>(digits * digits_accuracy);
|
|
const boost::uintmax_t maxit = 20;
|
|
boost::uintmax_t it = maxit;
|
|
T result = schroder_iterate(elliptic_root_functor_2deriv<T>(arc, radius), guess, min, max, get_digits, it);
|
|
iters = it;
|
|
|
|
return result;
|
|
} // T elliptic_root_2deriv_s Schroder
|
|
|
|
//////////////////////////////////////////////////////// end of algorithms - perhaps in a separate .hpp?
|
|
|
|
//! Print 4 floating-point types info: max_digits10, digits and required accuracy digits as a Quickbook table.
|
|
int table_type_info(double digits_accuracy)
|
|
{
|
|
std::string qbk_name = full_roots_name; // Prefix by boost_root file.
|
|
|
|
qbk_name += "type_info_table";
|
|
std::stringstream ss;
|
|
ss.precision(3);
|
|
ss << "_" << digits_accuracy * 100;
|
|
qbk_name += ss.str();
|
|
|
|
#ifdef _MSC_VER
|
|
qbk_name += "_msvc.qbk";
|
|
#else // assume GCC
|
|
qbk_name += "_gcc.qbk";
|
|
#endif
|
|
|
|
// Example: type_info_table_100_msvc.qbk
|
|
fout.open(qbk_name, std::ios_base::out);
|
|
|
|
if (fout.is_open())
|
|
{
|
|
std::cout << "Output type table to " << qbk_name << std::endl;
|
|
}
|
|
else
|
|
{ // Failed to open.
|
|
std::cout << " Open file " << qbk_name << " for output failed!" << std::endl;
|
|
std::cout << "errno " << errno << std::endl;
|
|
return errno;
|
|
}
|
|
|
|
fout <<
|
|
"[/"
|
|
<< qbk_name
|
|
<< "\n"
|
|
"Copyright 2015 Paul A. Bristow.""\n"
|
|
"Copyright 2015 John Maddock.""\n"
|
|
"Distributed under the Boost Software License, Version 1.0.""\n"
|
|
"(See accompanying file LICENSE_1_0.txt or copy at""\n"
|
|
"http://www.boost.org/LICENSE_1_0.txt).""\n"
|
|
"]""\n"
|
|
<< std::endl;
|
|
|
|
fout << "[h6 Fraction of maximum possible bits of accuracy required is " << digits_accuracy << ".]\n" << std::endl;
|
|
|
|
std::string table_id("type_info");
|
|
table_id += ss.str(); // Fraction digits accuracy.
|
|
|
|
#ifdef _MSC_VER
|
|
table_id += "_msvc";
|
|
#else // assume GCC
|
|
table_id += "_gcc";
|
|
#endif
|
|
|
|
fout << "[table:" << table_id << " Digits for float, double, long double and cpp_bin_float_50\n"
|
|
<< "[[type name] [max_digits10] [binary digits] [required digits]]\n";// header.
|
|
|
|
// For all fout types:
|
|
|
|
fout << "[[" << "float" << "]"
|
|
<< "[" << std::numeric_limits<float>::max_digits10 << "]" // max_digits10
|
|
<< "[" << std::numeric_limits<float>::digits << "]"// < "Binary digits
|
|
<< "[" << static_cast<int>(std::numeric_limits<float>::digits * digits_accuracy) << "]]\n"; // Accuracy digits.
|
|
|
|
fout << "[[" << "float" << "]"
|
|
<< "[" << std::numeric_limits<double>::max_digits10 << "]" // max_digits10
|
|
<< "[" << std::numeric_limits<double>::digits << "]"// < "Binary digits
|
|
<< "[" << static_cast<int>(std::numeric_limits<double>::digits * digits_accuracy) << "]]\n"; // Accuracy digits.
|
|
|
|
fout << "[[" << "long double" << "]"
|
|
<< "[" << std::numeric_limits<long double>::max_digits10 << "]" // max_digits10
|
|
<< "[" << std::numeric_limits<long double>::digits << "]"// < "Binary digits
|
|
<< "[" << static_cast<int>(std::numeric_limits<long double>::digits * digits_accuracy) << "]]\n"; // Accuracy digits.
|
|
|
|
fout << "[[" << "cpp_bin_float_50" << "]"
|
|
<< "[" << std::numeric_limits<cpp_bin_float_50>::max_digits10 << "]" // max_digits10
|
|
<< "[" << std::numeric_limits<cpp_bin_float_50>::digits << "]"// < "Binary digits
|
|
<< "[" << static_cast<int>(std::numeric_limits<cpp_bin_float_50>::digits * digits_accuracy) << "]]\n"; // Accuracy digits.
|
|
|
|
fout << "] [/table table_id_msvc] \n" << std::endl; // End of table.
|
|
|
|
fout.close();
|
|
return 0;
|
|
} // type_table
|
|
|
|
//! Evaluate root N timing for each algorithm, and for one floating-point type T.
|
|
template <typename T>
|
|
int test_root(cpp_bin_float_100 big_radius, cpp_bin_float_100 big_arc, cpp_bin_float_100 answer, const char* type_name, std::size_t type_no)
|
|
{
|
|
std::size_t max_digits = 2 + std::numeric_limits<T>::digits * 3010 / 10000;
|
|
// For new versions use max_digits10
|
|
// std::cout.precision(std::numeric_limits<T>::max_digits10);
|
|
std::cout.precision(max_digits);
|
|
std::cout << std::showpoint << std::endl; // Show trailing zeros too.
|
|
|
|
root_infos.push_back(root_info());
|
|
|
|
root_infos[type_no].max_digits10 = max_digits;
|
|
root_infos[type_no].full_typename = typeid(T).name(); // Full typename.
|
|
root_infos[type_no].short_typename = type_name; // Short typename.
|
|
root_infos[type_no].bin_digits = std::numeric_limits<T>::digits;
|
|
root_infos[type_no].get_digits = static_cast<int>(std::numeric_limits<T>::digits * digits_accuracy);
|
|
|
|
T radius = static_cast<T>(big_radius);
|
|
T arc = static_cast<T>(big_arc);
|
|
|
|
T result; // root
|
|
T sum = 0;
|
|
T ans = static_cast<T>(answer);
|
|
|
|
using boost::timer::nanosecond_type;
|
|
using boost::timer::cpu_times;
|
|
using boost::timer::cpu_timer;
|
|
|
|
long eval_count = boost::is_floating_point<T>::value ? 1000000 : 10000; // To give a sufficiently stable timing for the fast built-in types,
|
|
// This takes an inconveniently long time for multiprecision cpp_bin_float_50 etc types.
|
|
|
|
cpu_times now; // Holds wall, user and system times.
|
|
|
|
{ // Evaluate times etc for each algorithm.
|
|
//algorithm_names.push_back("TOMS748"); //
|
|
cpu_timer ti; // Can start, pause, resume and stop, and read elapsed.
|
|
ti.start();
|
|
for(long i = eval_count; i >= 0; --i)
|
|
{
|
|
result = elliptic_root_noderiv(radius, arc); //
|
|
sum += result;
|
|
}
|
|
now = ti.elapsed();
|
|
int time = static_cast<int>(now.user / eval_count);
|
|
root_infos[type_no].times.push_back(time); // CPU time taken.
|
|
if (time < root_infos[type_no].min_time)
|
|
{
|
|
root_infos[type_no].min_time = time;
|
|
}
|
|
ti.stop();
|
|
long int distance = static_cast<int>(boost::math::float_distance<T>(result, ans));
|
|
root_infos[type_no].distances.push_back(distance);
|
|
root_infos[type_no].iterations.push_back(iters); //
|
|
root_infos[type_no].full_results.push_back(result);
|
|
}
|
|
{
|
|
// algorithm_names.push_back("Newton"); // algorithm
|
|
cpu_timer ti; // Can start, pause, resume and stop, and read elapsed.
|
|
ti.start();
|
|
for(long i = eval_count; i >= 0; --i)
|
|
{
|
|
result = elliptic_root_1deriv(radius, arc); //
|
|
sum += result;
|
|
}
|
|
now = ti.elapsed();
|
|
int time = static_cast<int>(now.user / eval_count);
|
|
root_infos[type_no].times.push_back(time); // CPU time taken.
|
|
if (time < root_infos[type_no].min_time)
|
|
{
|
|
root_infos[type_no].min_time = time;
|
|
}
|
|
|
|
ti.stop();
|
|
long int distance = static_cast<int>(boost::math::float_distance<T>(result, ans));
|
|
root_infos[type_no].distances.push_back(distance);
|
|
root_infos[type_no].iterations.push_back(iters); //
|
|
root_infos[type_no].full_results.push_back(result);
|
|
}
|
|
{
|
|
//algorithm_names.push_back("Halley"); // algorithm
|
|
cpu_timer ti; // Can start, pause, resume and stop, and read elapsed.
|
|
ti.start();
|
|
for(long i = eval_count; i >= 0; --i)
|
|
{
|
|
result = elliptic_root_2deriv(radius, arc); //
|
|
sum += result;
|
|
}
|
|
now = ti.elapsed();
|
|
int time = static_cast<int>(now.user / eval_count);
|
|
root_infos[type_no].times.push_back(time); // CPU time taken.
|
|
ti.stop();
|
|
if (time < root_infos[type_no].min_time)
|
|
{
|
|
root_infos[type_no].min_time = time;
|
|
}
|
|
long int distance = static_cast<int>(boost::math::float_distance<T>(result, ans));
|
|
root_infos[type_no].distances.push_back(distance);
|
|
root_infos[type_no].iterations.push_back(iters); //
|
|
root_infos[type_no].full_results.push_back(result);
|
|
}
|
|
{
|
|
// algorithm_names.push_back("Schr'''ö'''der"); // algorithm
|
|
cpu_timer ti; // Can start, pause, resume and stop, and read elapsed.
|
|
ti.start();
|
|
for(long i = eval_count; i >= 0; --i)
|
|
{
|
|
result = elliptic_root_2deriv_s(arc, radius); //
|
|
sum += result;
|
|
}
|
|
now = ti.elapsed();
|
|
int time = static_cast<int>(now.user / eval_count);
|
|
root_infos[type_no].times.push_back(time); // CPU time taken.
|
|
if (time < root_infos[type_no].min_time)
|
|
{
|
|
root_infos[type_no].min_time = time;
|
|
}
|
|
ti.stop();
|
|
long int distance = static_cast<int>(boost::math::float_distance<T>(result, ans));
|
|
root_infos[type_no].distances.push_back(distance);
|
|
root_infos[type_no].iterations.push_back(iters); //
|
|
root_infos[type_no].full_results.push_back(result);
|
|
}
|
|
for (size_t i = 0; i != root_infos[type_no].times.size(); i++) // For each time.
|
|
{ // Normalize times.
|
|
root_infos[type_no].normed_times.push_back(static_cast<double>(root_infos[type_no].times[i]) / root_infos[type_no].min_time);
|
|
}
|
|
|
|
std::cout << "Accumulated result was: " << sum << std::endl;
|
|
|
|
return 4; // eval_count of how many algorithms used.
|
|
} // test_root
|
|
|
|
/*! Fill array of times, interations, etc for Nth root for all 4 types,
|
|
and write a table of results in Quickbook format.
|
|
*/
|
|
void table_root_info(cpp_bin_float_100 radius, cpp_bin_float_100 arc)
|
|
{
|
|
using std::abs;
|
|
|
|
std::cout << nooftypes << " floating-point types tested:" << std::endl;
|
|
#if defined(_DEBUG) || !defined(NDEBUG)
|
|
std::cout << "Compiled in debug mode." << std::endl;
|
|
#else
|
|
std::cout << "Compiled in optimise mode." << std::endl;
|
|
#endif
|
|
std::cout << "FP hardware " << fp_hardware << std::endl;
|
|
// Compute the 'right' answer for root N at 100 decimal digits.
|
|
cpp_bin_float_100 full_answer = elliptic_root_noderiv(radius, arc);
|
|
|
|
root_infos.clear(); // Erase any previous data.
|
|
// Fill the elements of the array for each floating-point type.
|
|
|
|
test_root<float>(radius, arc, full_answer, "float", 0);
|
|
test_root<double>(radius, arc, full_answer, "double", 1);
|
|
test_root<long double>(radius, arc, full_answer, "long double", 2);
|
|
test_root<cpp_bin_float_50>(radius, arc, full_answer, "cpp_bin_float_50", 3);
|
|
|
|
// Use info from 4 floating point types to
|
|
|
|
// Prepare Quickbook table for a single root
|
|
// with columns of times, iterations, distances repeated for various floating-point types,
|
|
// and 4 rows for each algorithm.
|
|
|
|
std::stringstream table_info;
|
|
table_info.precision(3);
|
|
table_info << "[table:elliptic root with radius " << radius << " and arc length " << arc << ") for float, double, long double and cpp_bin_float_50 types";
|
|
if (fp_hardware != "")
|
|
{
|
|
table_info << ", using " << fp_hardware;
|
|
}
|
|
table_info << std::endl;
|
|
|
|
fout << table_info.str()
|
|
<< "[[][float][][][] [][double][][][] [][long d][][][] [][cpp50][][]]\n"
|
|
<< "[[Algo ]";
|
|
for (size_t tp = 0; tp != nooftypes; tp++)
|
|
{ // For all types:
|
|
fout << "[Its]" << "[Times]" << "[Norm]" << "[Dis]" << "[ ]";
|
|
}
|
|
fout << "]" << std::endl;
|
|
|
|
// Row for all algorithms.
|
|
for (std::size_t algo = 0; algo != noofalgos; algo++)
|
|
{
|
|
fout << "[[" << std::left << std::setw(9) << algo_names[algo] << "]";
|
|
for (size_t tp = 0; tp != nooftypes; tp++)
|
|
{ // For all types:
|
|
fout
|
|
<< "[" << std::right << std::showpoint
|
|
<< std::setw(3) << std::setprecision(2) << root_infos[tp].iterations[algo] << "]["
|
|
<< std::setw(5) << std::setprecision(5) << root_infos[tp].times[algo] << "][";
|
|
fout << std::setw(3) << std::setprecision(3);
|
|
double normed_time = root_infos[tp].normed_times[algo];
|
|
if (abs(normed_time - 1.00) <= 0.05)
|
|
{ // At or near the best time, so show as blue.
|
|
fout << "[role blue " << normed_time << "]";
|
|
}
|
|
else if (abs(normed_time) > 4.)
|
|
{ // markedly poor so show as red.
|
|
fout << "[role red " << normed_time << "]";
|
|
}
|
|
else
|
|
{ // Not the best, so normal black.
|
|
fout << normed_time;
|
|
}
|
|
fout << "]["
|
|
<< std::setw(3) << std::setprecision(2) << root_infos[tp].distances[algo] << "][ ]";
|
|
} // tp
|
|
fout << "]" << std::endl;
|
|
} // for algo
|
|
fout << "] [/end of table root]\n";
|
|
} // void table_root_info
|
|
|
|
/*! Output program header, table of type info, and tables for 4 algorithms and 4 floating-point types,
|
|
for Nth root required digits_accuracy.
|
|
*/
|
|
|
|
int roots_tables(cpp_bin_float_100 radius, cpp_bin_float_100 arc, double digits_accuracy)
|
|
{
|
|
::digits_accuracy = digits_accuracy;
|
|
// Save globally so that it is available to root-finding algorithms. Ugly :-(
|
|
|
|
#if defined(_DEBUG) || !defined(NDEBUG)
|
|
std::string debug_or_optimize("Compiled in debug mode.");
|
|
#else
|
|
std::string debug_or_optimize("Compiled in optimise mode.");
|
|
#endif
|
|
|
|
// Create filename for roots_table
|
|
std::string qbk_name = full_roots_name;
|
|
qbk_name += "elliptic_table";
|
|
|
|
std::stringstream ss;
|
|
ss.precision(3);
|
|
// ss << "_" << N // now put all the tables in one .qbk file?
|
|
ss << "_" << digits_accuracy * 100
|
|
<< std::flush;
|
|
// Assume only save optimize mode runs, so don't add any _DEBUG info.
|
|
qbk_name += ss.str();
|
|
|
|
#ifdef _MSC_VER
|
|
qbk_name += "_msvc";
|
|
#else // assume GCC
|
|
qbk_name += "_gcc";
|
|
#endif
|
|
if (fp_hardware != "")
|
|
{
|
|
qbk_name += fp_hardware;
|
|
}
|
|
qbk_name += ".qbk";
|
|
|
|
fout.open(qbk_name, std::ios_base::out);
|
|
|
|
if (fout.is_open())
|
|
{
|
|
std::cout << "Output root table to " << qbk_name << std::endl;
|
|
}
|
|
else
|
|
{ // Failed to open.
|
|
std::cout << " Open file " << qbk_name << " for output failed!" << std::endl;
|
|
std::cout << "errno " << errno << std::endl;
|
|
return errno;
|
|
}
|
|
|
|
fout <<
|
|
"[/"
|
|
<< qbk_name
|
|
<< "\n"
|
|
"Copyright 2015 Paul A. Bristow.""\n"
|
|
"Copyright 2015 John Maddock.""\n"
|
|
"Distributed under the Boost Software License, Version 1.0.""\n"
|
|
"(See accompanying file LICENSE_1_0.txt or copy at""\n"
|
|
"http://www.boost.org/LICENSE_1_0.txt).""\n"
|
|
"]""\n"
|
|
<< std::endl;
|
|
|
|
// Print out the program/compiler/stdlib/platform names as a Quickbook comment:
|
|
fout << "\n[h6 Program [@../../example/" << short_file_name(sourcefilename) << " " << short_file_name(sourcefilename) << "],\n "
|
|
<< BOOST_COMPILER << ", "
|
|
<< BOOST_STDLIB << ", "
|
|
<< BOOST_PLATFORM << "\n"
|
|
<< debug_or_optimize
|
|
<< ((fp_hardware != "") ? ", " + fp_hardware : "")
|
|
<< "]" // [h6 close].
|
|
<< std::endl;
|
|
|
|
//fout << "Fraction of full accuracy " << digits_accuracy << std::endl;
|
|
|
|
table_root_info(radius, arc);
|
|
|
|
fout.close();
|
|
|
|
// table_type_info(digits_accuracy);
|
|
|
|
return 0;
|
|
} // roots_tables
|
|
|
|
|
|
int main()
|
|
{
|
|
using namespace boost::multiprecision;
|
|
using namespace boost::math;
|
|
|
|
|
|
try
|
|
{
|
|
std::cout << "Tests run with " << BOOST_COMPILER << ", "
|
|
<< BOOST_STDLIB << ", " << BOOST_PLATFORM << ", ";
|
|
|
|
// How to: Configure Visual C++ Projects to Target 64-Bit Platforms
|
|
// https://msdn.microsoft.com/en-us/library/9yb4317s.aspx
|
|
|
|
#ifdef _M_X64 // Defined for compilations that target x64 processors.
|
|
std::cout << "X64 " << std::endl;
|
|
fp_hardware += "_X64";
|
|
#else
|
|
# ifdef _M_IX86
|
|
std::cout << "X32 " << std::endl;
|
|
fp_hardware += "_X86";
|
|
# endif
|
|
#endif
|
|
|
|
#ifdef _M_AMD64
|
|
std::cout << "AMD64 " << std::endl;
|
|
// fp_hardware += "_AMD64";
|
|
#endif
|
|
|
|
// https://msdn.microsoft.com/en-us/library/7t5yh4fd.aspx
|
|
// /arch (x86) options /arch:[IA32|SSE|SSE2|AVX|AVX2]
|
|
// default is to use SSE and SSE2 instructions by default.
|
|
// https://msdn.microsoft.com/en-us/library/jj620901.aspx
|
|
// /arch (x64) options /arch:AVX and /arch:AVX2
|
|
|
|
// MSVC doesn't bother to set these SSE macros!
|
|
// http://stackoverflow.com/questions/18563978/sse-sse2-is-enabled-control-in-visual-studio
|
|
// https://msdn.microsoft.com/en-us/library/b0084kay.aspx predefined macros.
|
|
|
|
// But some of these macros are *not* defined by MSVC,
|
|
// unlike AVX (but *are* defined by GCC and Clang).
|
|
// So the macro code above does define them.
|
|
#if (defined(_M_AMD64) || defined (_M_X64))
|
|
# define _M_X64
|
|
# define __SSE2__
|
|
#else
|
|
# ifdef _M_IX86_FP // Expands to an integer literal value indicating which /arch compiler option was used:
|
|
std::cout << "Floating-point _M_IX86_FP = " << _M_IX86_FP << std::endl;
|
|
# if (_M_IX86_FP == 2) // 2 if /arch:SSE2, /arch:AVX or /arch:AVX2
|
|
# define __SSE2__ // x32
|
|
# elif (_M_IX86_FP == 1) // 1 if /arch:SSE was used.
|
|
# define __SSE__ // x32
|
|
# elif (_M_IX86_FP == 0) // 0 if /arch:IA32 was used.
|
|
# define _X32 // No special FP instructions.
|
|
# endif
|
|
# endif
|
|
#endif
|
|
// Set the fp_hardware that is used in the .qbk filename.
|
|
#ifdef __AVX2__
|
|
std::cout << "Floating-point AVX2 " << std::endl;
|
|
fp_hardware += "_AVX2";
|
|
# else
|
|
# ifdef __AVX__
|
|
std::cout << "Floating-point AVX " << std::endl;
|
|
fp_hardware += "_AVX";
|
|
# else
|
|
# ifdef __SSE2__
|
|
std::cout << "Floating-point SSE2 " << std::endl;
|
|
fp_hardware += "_SSE2";
|
|
# else
|
|
# ifdef __SSE__
|
|
std::cout << "Floating-point SSE " << std::endl;
|
|
fp_hardware += "_SSE";
|
|
# endif
|
|
# endif
|
|
# endif
|
|
# endif
|
|
|
|
#ifdef _M_IX86
|
|
std::cout << "Floating-point X86 _M_IX86 = " << _M_IX86 << std::endl;
|
|
// https://msdn.microsoft.com/en-us/library/aa273918%28v=vs.60%29.aspx#_predir_table_1..3
|
|
// 600 = Pentium Pro
|
|
#endif
|
|
|
|
#ifdef _MSC_FULL_VER
|
|
std::cout << "Floating-point _MSC_FULL_VER " << _MSC_FULL_VER << std::endl;
|
|
#endif
|
|
|
|
#ifdef __MSVC_RUNTIME_CHECKS
|
|
std::cout << "Runtime __MSVC_RUNTIME_CHECKS " << std::endl;
|
|
#endif
|
|
|
|
BOOST_MATH_CONTROL_FP;
|
|
|
|
cpp_bin_float_100 radius("28.");
|
|
cpp_bin_float_100 arc("300.");
|
|
// Compute full answer to more than precision of tests.
|
|
//T value = 28.; // integer (exactly representable as floating-point)
|
|
// whose cube root is *not* exactly representable.
|
|
// Wolfram Alpha command N[28 ^ (1 / 3), 100] computes cube root to 100 decimal digits.
|
|
// 3.036588971875662519420809578505669635581453977248111123242141654169177268411884961770250390838097895
|
|
|
|
std::cout.precision(100);
|
|
std::cout << "radius 1" << radius << std::endl;
|
|
std::cout << "arc length" << arc << std::endl;
|
|
// std::cout << ",\n""answer = " << full_answer << std::endl;
|
|
std::cout.precision(6);
|
|
// cbrt cpp_bin_float_100 full_answer("3.036588971875662519420809578505669635581453977248111123242141654169177268411884961770250390838097895");
|
|
|
|
// Output the table of types, maxdigits10 and digits and required digits for some accuracies.
|
|
|
|
// Output tables for some roots at full accuracy.
|
|
roots_tables(radius, arc, 1.);
|
|
|
|
// Output tables for some roots at less accuracy.
|
|
//roots_tables(full_value, 0.75);
|
|
|
|
return boost::exit_success;
|
|
}
|
|
catch (std::exception const& ex)
|
|
{
|
|
std::cout << "exception thrown: " << ex.what() << std::endl;
|
|
return boost::exit_failure;
|
|
}
|
|
} // int main()
|
|
|
|
/*
|
|
|
|
*/
|