405 lines
12 KiB
C++
405 lines
12 KiB
C++
// (C) Copyright John Maddock 2006.
|
|
// Use, modification and distribution are subject to the
|
|
// Boost Software License, Version 1.0. (See accompanying file
|
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
#define L22
|
|
//#include "../tools/ntl_rr_lanczos.hpp"
|
|
//#include "../tools/ntl_rr_digamma.hpp"
|
|
#include "multiprecision.hpp"
|
|
#include <boost/math/tools/polynomial.hpp>
|
|
#include <boost/math/special_functions.hpp>
|
|
#include <boost/math/special_functions/zeta.hpp>
|
|
#include <boost/math/special_functions/expint.hpp>
|
|
#include <boost/math/special_functions/lambert_w.hpp>
|
|
|
|
#include <cmath>
|
|
|
|
|
|
mp_type f(const mp_type& x, int variant)
|
|
{
|
|
static const mp_type tiny = boost::math::tools::min_value<mp_type>() * 64;
|
|
switch(variant)
|
|
{
|
|
case 0:
|
|
{
|
|
mp_type x_ = sqrt(x == 0 ? 1e-80 : x);
|
|
return boost::math::erf(x_) / x_;
|
|
}
|
|
case 1:
|
|
{
|
|
mp_type x_ = 1 / x;
|
|
return boost::math::erfc(x_) * x_ / exp(-x_ * x_);
|
|
}
|
|
case 2:
|
|
{
|
|
return boost::math::erfc(x) * x / exp(-x * x);
|
|
}
|
|
case 3:
|
|
{
|
|
mp_type y(x);
|
|
if(y == 0)
|
|
y += tiny;
|
|
return boost::math::lgamma(y+2) / y - 0.5;
|
|
}
|
|
case 4:
|
|
//
|
|
// lgamma in the range [2,3], use:
|
|
//
|
|
// lgamma(x) = (x-2) * (x + 1) * (c + R(x - 2))
|
|
//
|
|
// Works well at 80-bit long double precision, but doesn't
|
|
// stretch to 128-bit precision.
|
|
//
|
|
if(x == 0)
|
|
{
|
|
return boost::lexical_cast<mp_type>("0.42278433509846713939348790991759756895784066406008") / 3;
|
|
}
|
|
return boost::math::lgamma(x+2) / (x * (x+3));
|
|
case 5:
|
|
{
|
|
//
|
|
// lgamma in the range [1,2], use:
|
|
//
|
|
// lgamma(x) = (x - 1) * (x - 2) * (c + R(x - 1))
|
|
//
|
|
// works well over [1, 1.5] but not near 2 :-(
|
|
//
|
|
mp_type r1 = boost::lexical_cast<mp_type>("0.57721566490153286060651209008240243104215933593992");
|
|
mp_type r2 = boost::lexical_cast<mp_type>("0.42278433509846713939348790991759756895784066406008");
|
|
if(x == 0)
|
|
{
|
|
return r1;
|
|
}
|
|
if(x == 1)
|
|
{
|
|
return r2;
|
|
}
|
|
return boost::math::lgamma(x+1) / (x * (x - 1));
|
|
}
|
|
case 6:
|
|
{
|
|
//
|
|
// lgamma in the range [1.5,2], use:
|
|
//
|
|
// lgamma(x) = (2 - x) * (1 - x) * (c + R(2 - x))
|
|
//
|
|
// works well over [1.5, 2] but not near 1 :-(
|
|
//
|
|
mp_type r1 = boost::lexical_cast<mp_type>("0.57721566490153286060651209008240243104215933593992");
|
|
mp_type r2 = boost::lexical_cast<mp_type>("0.42278433509846713939348790991759756895784066406008");
|
|
if(x == 0)
|
|
{
|
|
return r2;
|
|
}
|
|
if(x == 1)
|
|
{
|
|
return r1;
|
|
}
|
|
return boost::math::lgamma(2-x) / (x * (x - 1));
|
|
}
|
|
case 7:
|
|
{
|
|
//
|
|
// erf_inv in range [0, 0.5]
|
|
//
|
|
mp_type y = x;
|
|
if(y == 0)
|
|
y = boost::math::tools::epsilon<mp_type>() / 64;
|
|
return boost::math::erf_inv(y) / (y * (y+10));
|
|
}
|
|
case 8:
|
|
{
|
|
//
|
|
// erfc_inv in range [0.25, 0.5]
|
|
// Use an y-offset of 0.25, and range [0, 0.25]
|
|
// abs error, auto y-offset.
|
|
//
|
|
mp_type y = x;
|
|
if(y == 0)
|
|
y = boost::lexical_cast<mp_type>("1e-5000");
|
|
return sqrt(-2 * log(y)) / boost::math::erfc_inv(y);
|
|
}
|
|
case 9:
|
|
{
|
|
mp_type x2 = x;
|
|
if(x2 == 0)
|
|
x2 = boost::lexical_cast<mp_type>("1e-5000");
|
|
mp_type y = exp(-x2*x2); // sqrt(-log(x2)) - 5;
|
|
return boost::math::erfc_inv(y) / x2;
|
|
}
|
|
case 10:
|
|
{
|
|
//
|
|
// Digamma over the interval [1,2], set x-offset to 1
|
|
// and optimise for absolute error over [0,1].
|
|
//
|
|
int current_precision = get_working_precision();
|
|
if(current_precision < 1000)
|
|
set_working_precision(1000);
|
|
//
|
|
// This value for the root of digamma is calculated using our
|
|
// differentiated lanczos approximation. It agrees with Cody
|
|
// to ~ 25 digits and to Morris to 35 digits. See:
|
|
// TOMS ALGORITHM 708 (Didonato and Morris).
|
|
// and Math. Comp. 27, 123-127 (1973) by Cody, Strecok and Thacher.
|
|
//
|
|
//mp_type root = boost::lexical_cast<mp_type>("1.4616321449683623412626595423257213234331845807102825466429633351908372838889871");
|
|
//
|
|
// Actually better to calculate the root on the fly, it appears to be more
|
|
// accurate: convergence is easier with the 1000-bit value, the approximation
|
|
// produced agrees with functions.mathworld.com values to 35 digits even quite
|
|
// near the root.
|
|
//
|
|
static boost::math::tools::eps_tolerance<mp_type> tol(1000);
|
|
static boost::uintmax_t max_iter = 1000;
|
|
mp_type (*pdg)(mp_type) = &boost::math::digamma;
|
|
static const mp_type root = boost::math::tools::bracket_and_solve_root(pdg, mp_type(1.4), mp_type(1.5), true, tol, max_iter).first;
|
|
|
|
mp_type x2 = x;
|
|
double lim = 1e-65;
|
|
if(fabs(x2 - root) < lim)
|
|
{
|
|
//
|
|
// This is a problem area:
|
|
// x2-root suffers cancellation error, so does digamma.
|
|
// That gets compounded again when Remez calculates the error
|
|
// function. This cludge seems to stop the worst of the problems:
|
|
//
|
|
static const mp_type a = boost::math::digamma(root - lim) / -lim;
|
|
static const mp_type b = boost::math::digamma(root + lim) / lim;
|
|
mp_type fract = (x2 - root + lim) / (2*lim);
|
|
mp_type r = (1-fract) * a + fract * b;
|
|
std::cout << "In root area: " << r;
|
|
return r;
|
|
}
|
|
mp_type result = boost::math::digamma(x2) / (x2 - root);
|
|
if(current_precision < 1000)
|
|
set_working_precision(current_precision);
|
|
return result;
|
|
}
|
|
case 11:
|
|
// expm1:
|
|
if(x == 0)
|
|
{
|
|
static mp_type lim = 1e-80;
|
|
static mp_type a = boost::math::expm1(-lim);
|
|
static mp_type b = boost::math::expm1(lim);
|
|
static mp_type l = (b-a) / (2 * lim);
|
|
return l;
|
|
}
|
|
return boost::math::expm1(x) / x;
|
|
case 12:
|
|
// demo, and test case:
|
|
return exp(x);
|
|
case 13:
|
|
// K(k):
|
|
{
|
|
return boost::math::ellint_1(x);
|
|
}
|
|
case 14:
|
|
// K(k)
|
|
{
|
|
return boost::math::ellint_1(1-x) / log(x);
|
|
}
|
|
case 15:
|
|
// E(k)
|
|
{
|
|
// x = 1-k^2
|
|
mp_type z = 1 - x * log(x);
|
|
return boost::math::ellint_2(sqrt(1-x)) / z;
|
|
}
|
|
case 16:
|
|
// Bessel I0(x) over [0,16]:
|
|
{
|
|
return boost::math::cyl_bessel_i(0, sqrt(x));
|
|
}
|
|
case 17:
|
|
// Bessel I0(x) over [16,INF]
|
|
{
|
|
mp_type z = 1 / (mp_type(1)/16 - x);
|
|
return boost::math::cyl_bessel_i(0, z) * sqrt(z) / exp(z);
|
|
}
|
|
case 18:
|
|
// Zeta over [0, 1]
|
|
{
|
|
return boost::math::zeta(1 - x) * x - x;
|
|
}
|
|
case 19:
|
|
// Zeta over [1, n]
|
|
{
|
|
return boost::math::zeta(x) - 1 / (x - 1);
|
|
}
|
|
case 20:
|
|
// Zeta over [a, b] : a >> 1
|
|
{
|
|
return log(boost::math::zeta(x) - 1);
|
|
}
|
|
case 21:
|
|
// expint[1] over [0,1]:
|
|
{
|
|
mp_type tiny = boost::lexical_cast<mp_type>("1e-5000");
|
|
mp_type z = (x <= tiny) ? tiny : x;
|
|
return boost::math::expint(1, z) - z + log(z);
|
|
}
|
|
case 22:
|
|
// expint[1] over [1,N],
|
|
// Note that x varies from [0,1]:
|
|
{
|
|
mp_type z = 1 / x;
|
|
return boost::math::expint(1, z) * exp(z) * z;
|
|
}
|
|
case 23:
|
|
// expin Ei over [0,R]
|
|
{
|
|
static const mp_type root =
|
|
boost::lexical_cast<mp_type>("0.372507410781366634461991866580119133535689497771654051555657435242200120636201854384926049951548942392");
|
|
mp_type z = x < (std::numeric_limits<long double>::min)() ? (std::numeric_limits<long double>::min)() : x;
|
|
return (boost::math::expint(z) - log(z / root)) / (z - root);
|
|
}
|
|
case 24:
|
|
// Expint Ei for large x:
|
|
{
|
|
static const mp_type root =
|
|
boost::lexical_cast<mp_type>("0.372507410781366634461991866580119133535689497771654051555657435242200120636201854384926049951548942392");
|
|
mp_type z = x < (std::numeric_limits<long double>::min)() ? (std::numeric_limits<long double>::max)() : mp_type(1 / x);
|
|
return (boost::math::expint(z) - z) * z * exp(-z);
|
|
//return (boost::math::expint(z) - log(z)) * z * exp(-z);
|
|
}
|
|
case 25:
|
|
// Expint Ei for large x:
|
|
{
|
|
return (boost::math::expint(x) - x) * x * exp(-x);
|
|
}
|
|
case 26:
|
|
{
|
|
//
|
|
// erf_inv in range [0, 0.5]
|
|
//
|
|
mp_type y = x;
|
|
if(y == 0)
|
|
y = boost::math::tools::epsilon<mp_type>() / 64;
|
|
y = sqrt(y);
|
|
return boost::math::erf_inv(y) / (y);
|
|
}
|
|
case 28:
|
|
{
|
|
// log1p over [-0.5,0.5]
|
|
mp_type y = x;
|
|
if(fabs(y) < 1e-100)
|
|
y = (y == 0) ? 1e-100 : boost::math::sign(y) * 1e-100;
|
|
return (boost::math::log1p(y) - y + y * y / 2) / (y);
|
|
}
|
|
case 29:
|
|
{
|
|
// cbrt over [0.5, 1]
|
|
return boost::math::cbrt(x);
|
|
}
|
|
case 30:
|
|
{
|
|
// trigamma over [x,y]
|
|
mp_type y = x;
|
|
y = sqrt(y);
|
|
return boost::math::trigamma(x) * (x * x);
|
|
}
|
|
case 31:
|
|
{
|
|
// trigamma over [x, INF]
|
|
if(x == 0) return 1;
|
|
mp_type y = (x == 0) ? (std::numeric_limits<double>::max)() / 2 : mp_type(1/x);
|
|
return boost::math::trigamma(y) * y;
|
|
}
|
|
case 32:
|
|
{
|
|
// I0 over [N, INF]
|
|
// Don't need to go past x = 1/1000 = 1e-3 for double, or
|
|
// 1/15000 = 0.0006 for long double, start at 1/7.75=0.13
|
|
mp_type arg = 1 / x;
|
|
return sqrt(arg) * exp(-arg) * boost::math::cyl_bessel_i(0, arg);
|
|
}
|
|
case 33:
|
|
{
|
|
// I0 over [0, N]
|
|
mp_type xx = sqrt(x) * 2;
|
|
return (boost::math::cyl_bessel_i(0, xx) - 1) / x;
|
|
}
|
|
case 34:
|
|
{
|
|
// I1 over [0, N]
|
|
mp_type xx = sqrt(x) * 2;
|
|
return (boost::math::cyl_bessel_i(1, xx) * 2 / xx - 1 - x / 2) / (x * x);
|
|
}
|
|
case 35:
|
|
{
|
|
// I1 over [N, INF]
|
|
mp_type xx = 1 / x;
|
|
return boost::math::cyl_bessel_i(1, xx) * sqrt(xx) * exp(-xx);
|
|
}
|
|
case 36:
|
|
{
|
|
// K0 over [0, 1]
|
|
mp_type xx = sqrt(x);
|
|
return boost::math::cyl_bessel_k(0, xx) + log(xx) * boost::math::cyl_bessel_i(0, xx);
|
|
}
|
|
case 37:
|
|
{
|
|
// K0 over [1, INF]
|
|
mp_type xx = 1 / x;
|
|
return boost::math::cyl_bessel_k(0, xx) * exp(xx) * sqrt(xx);
|
|
}
|
|
case 38:
|
|
{
|
|
// K1 over [0, 1]
|
|
mp_type xx = sqrt(x);
|
|
return (boost::math::cyl_bessel_k(1, xx) - log(xx) * boost::math::cyl_bessel_i(1, xx) - 1 / xx) / xx;
|
|
}
|
|
case 39:
|
|
{
|
|
// K1 over [1, INF]
|
|
mp_type xx = 1 / x;
|
|
return boost::math::cyl_bessel_k(1, xx) * sqrt(xx) * exp(xx);
|
|
}
|
|
// Lambert W0
|
|
case 40:
|
|
return boost::math::lambert_w0(x);
|
|
case 41:
|
|
{
|
|
if (x == 0)
|
|
return 1;
|
|
return boost::math::lambert_w0(x) / x;
|
|
}
|
|
case 42:
|
|
{
|
|
static const mp_type e1 = exp(mp_type(-1));
|
|
return x / -boost::math::lambert_w0(-e1 + x);
|
|
}
|
|
case 43:
|
|
{
|
|
mp_type xx = 1 / x;
|
|
return 1 / boost::math::lambert_w0(xx);
|
|
}
|
|
case 44:
|
|
{
|
|
mp_type ex = exp(x);
|
|
return boost::math::lambert_w0(ex) - x;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void show_extra(
|
|
const boost::math::tools::polynomial<mp_type>& n,
|
|
const boost::math::tools::polynomial<mp_type>& d,
|
|
const mp_type& x_offset,
|
|
const mp_type& y_offset,
|
|
int variant)
|
|
{
|
|
switch(variant)
|
|
{
|
|
default:
|
|
// do nothing here...
|
|
;
|
|
}
|
|
}
|
|
|