math/test/bivariate_statistics_test.cpp
2019-10-05 15:56:02 -04:00

171 lines
5.1 KiB
C++

/*
* (C) Copyright Nick Thompson 2018.
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#include <iostream>
#include <iomanip>
#include <vector>
#include <array>
#include <forward_list>
#include <algorithm>
#include <random>
#include <boost/core/lightweight_test.hpp>
#include <boost/numeric/ublas/vector.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/math/statistics/univariate_statistics.hpp>
#include <boost/math/statistics/bivariate_statistics.hpp>
#include <boost/multiprecision/cpp_bin_float.hpp>
#include <boost/multiprecision/cpp_complex.hpp>
using boost::multiprecision::cpp_bin_float_50;
using boost::multiprecision::cpp_complex_50;
/*
* Test checklist:
* 1) Does it work with multiprecision?
* 2) Does it work with .cbegin()/.cend() if the data is not altered?
* 3) Does it work with ublas and std::array? (Checking Eigen and Armadillo will make the CI system really unhappy.)
* 4) Does it work with std::forward_list if a forward iterator is all that is required?
* 5) Does it work with complex data if complex data is sensible?
*/
using boost::math::statistics::means_and_covariance;
using boost::math::statistics::covariance;
template<class Real>
void test_covariance()
{
std::cout << std::setprecision(std::numeric_limits<Real>::digits10+1);
Real tol = std::numeric_limits<Real>::epsilon();
using std::abs;
// Covariance of a single thing is zero:
std::array<Real, 1> u1{8};
std::array<Real, 1> v1{17};
auto [mu_u1, mu_v1, cov1] = means_and_covariance(u1, v1);
BOOST_TEST(abs(cov1) < tol);
BOOST_TEST(abs(mu_u1 - 8) < tol);
BOOST_TEST(abs(mu_v1 - 17) < tol);
std::array<Real, 2> u2{8, 4};
std::array<Real, 2> v2{3, 7};
auto [mu_u2, mu_v2, cov2] = means_and_covariance(u2, v2);
BOOST_TEST(abs(cov2+4) < tol);
BOOST_TEST(abs(mu_u2 - 6) < tol);
BOOST_TEST(abs(mu_v2 - 5) < tol);
std::vector<Real> u3{1,2,3};
std::vector<Real> v3{1,1,1};
auto [mu_u3, mu_v3, cov3] = means_and_covariance(u3, v3);
// Since v is constant, covariance(u,v) = 0 against everything any u:
BOOST_TEST(abs(cov3) < tol);
BOOST_TEST(abs(mu_u3 - 2) < tol);
BOOST_TEST(abs(mu_v3 - 1) < tol);
// Make sure we pull the correct symbol out of means_and_covariance:
cov3 = covariance(u3, v3);
BOOST_TEST(abs(cov3) < tol);
cov3 = covariance(v3, u3);
// Covariance is symmetric: cov(u,v) = cov(v,u)
BOOST_TEST(abs(cov3) < tol);
// cov(u,u) = sigma(u)^2:
cov3 = covariance(u3, u3);
Real expected = Real(2)/Real(3);
BOOST_TEST(abs(cov3 - expected) < tol);
std::mt19937 gen(15);
// Can't template standard library on multiprecision, so use double and cast back:
std::uniform_real_distribution<double> dis(-1.0, 1.0);
std::vector<Real> u(500);
std::vector<Real> v(500);
for(size_t i = 0; i < u.size(); ++i)
{
u[i] = (Real) dis(gen);
v[i] = (Real) dis(gen);
}
Real mu_u = boost::math::statistics::mean(u);
Real mu_v = boost::math::statistics::mean(v);
Real sigma_u_sq = boost::math::statistics::variance(u);
Real sigma_v_sq = boost::math::statistics::variance(v);
auto [mu_u_, mu_v_, cov_uv] = means_and_covariance(u, v);
BOOST_TEST(abs(mu_u - mu_u_) < tol);
BOOST_TEST(abs(mu_v - mu_v_) < tol);
// Cauchy-Schwartz inequality:
BOOST_TEST(cov_uv*cov_uv <= sigma_u_sq*sigma_v_sq);
// cov(X, X) = sigma(X)^2:
Real cov_uu = covariance(u, u);
BOOST_TEST(abs(cov_uu - sigma_u_sq) < tol);
Real cov_vv = covariance(v, v);
BOOST_TEST(abs(cov_vv - sigma_v_sq) < tol);
}
template<class Real>
void test_correlation_coefficient()
{
using boost::math::statistics::correlation_coefficient;
Real tol = std::numeric_limits<Real>::epsilon();
std::vector<Real> u{1};
std::vector<Real> v{1};
Real rho_uv = correlation_coefficient(u, v);
BOOST_TEST(abs(rho_uv - 1) < tol);
u = {1,1};
v = {1,1};
rho_uv = correlation_coefficient(u, v);
BOOST_TEST(abs(rho_uv - 1) < tol);
u = {1, 2, 3};
v = {1, 2, 3};
rho_uv = correlation_coefficient(u, v);
BOOST_TEST(abs(rho_uv - 1) < tol);
u = {1, 2, 3};
v = {-1, -2, -3};
rho_uv = correlation_coefficient(u, v);
BOOST_TEST(abs(rho_uv + 1) < tol);
rho_uv = correlation_coefficient(v, u);
BOOST_TEST(abs(rho_uv + 1) < tol);
u = {1, 2, 3};
v = {0, 0, 0};
rho_uv = correlation_coefficient(v, u);
BOOST_TEST(abs(rho_uv) < tol);
u = {1, 2, 3};
v = {0, 0, 3};
rho_uv = correlation_coefficient(v, u);
// mu_u = 2, sigma_u^2 = 2/3, mu_v = 1, sigma_v^2 = 2, cov(u,v) = 1.
BOOST_TEST(abs(rho_uv - sqrt(Real(3))/Real(2)) < tol);
}
int main()
{
test_covariance<float>();
test_covariance<double>();
test_covariance<long double>();
test_covariance<cpp_bin_float_50>();
test_correlation_coefficient<float>();
test_correlation_coefficient<double>();
test_correlation_coefficient<long double>();
test_correlation_coefficient<cpp_bin_float_50>();
return boost::report_errors();
}