math/test/cardinal_quintic_b_spline_test.cpp

297 lines
8.6 KiB
C++

/*
* Copyright Nick Thompson, 2019
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#include "math_unit_test.hpp"
#include <numeric>
#include <utility>
#include <boost/math/interpolators/cardinal_quintic_b_spline.hpp>
#ifdef BOOST_HAS_FLOAT128
#include <boost/multiprecision/float128.hpp>
using boost::multiprecision::float128;
#endif
using boost::math::interpolators::cardinal_quintic_b_spline;
template<class Real>
void test_constant()
{
Real c = 7.5;
Real t0 = 0;
Real h = Real(1)/Real(16);
size_t n = 513;
std::vector<Real> v(n, c);
std::pair<Real, Real> left_endpoint_derivatives{0, 0};
std::pair<Real, Real> right_endpoint_derivatives{0, 0};
auto qbs = cardinal_quintic_b_spline<Real>(v.data(), v.size(), t0, h, left_endpoint_derivatives, right_endpoint_derivatives);
size_t i = 0;
while (i < n) {
Real t = t0 + i*h;
CHECK_ULP_CLOSE(c, qbs(t), 3);
CHECK_MOLLIFIED_CLOSE(Real(0), qbs.prime(t), 400*std::numeric_limits<Real>::epsilon());
CHECK_MOLLIFIED_CLOSE(Real(0), qbs.double_prime(t), 60000*std::numeric_limits<Real>::epsilon());
++i;
}
i = 0;
while (i < n - 1) {
Real t = t0 + i*h + h/2;
CHECK_ULP_CLOSE(c, qbs(t), 5);
CHECK_MOLLIFIED_CLOSE(Real(0), qbs.prime(t), 600*std::numeric_limits<Real>::epsilon());
CHECK_MOLLIFIED_CLOSE(Real(0), qbs.double_prime(t), 30000*std::numeric_limits<Real>::epsilon());
t = t0 + i*h + h/4;
CHECK_ULP_CLOSE(c, qbs(t), 4);
CHECK_MOLLIFIED_CLOSE(Real(0), qbs.prime(t), 600*std::numeric_limits<Real>::epsilon());
CHECK_MOLLIFIED_CLOSE(Real(0), qbs.double_prime(t), 10000*std::numeric_limits<Real>::epsilon());
++i;
}
}
template<class Real>
void test_constant_estimate_derivatives()
{
Real c = 7.5;
Real t0 = 0;
Real h = Real(1)/Real(16);
size_t n = 513;
std::vector<Real> v(n, c);
auto qbs = cardinal_quintic_b_spline<Real>(v.data(), v.size(), t0, h);
size_t i = 0;
while (i < n) {
Real t = t0 + i*h;
CHECK_ULP_CLOSE(c, qbs(t), 3);
CHECK_MOLLIFIED_CLOSE(Real(0), qbs.prime(t), 1200*std::numeric_limits<Real>::epsilon());
CHECK_MOLLIFIED_CLOSE(Real(0), qbs.double_prime(t), 200000*std::numeric_limits<Real>::epsilon());
++i;
}
i = 0;
while (i < n - 1) {
Real t = t0 + i*h + h/2;
CHECK_ULP_CLOSE(c, qbs(t), 8);
CHECK_MOLLIFIED_CLOSE(Real(0), qbs.prime(t), 1200*std::numeric_limits<Real>::epsilon());
CHECK_MOLLIFIED_CLOSE(Real(0), qbs.double_prime(t), 80000*std::numeric_limits<Real>::epsilon());
t = t0 + i*h + h/4;
CHECK_ULP_CLOSE(c, qbs(t), 5);
CHECK_MOLLIFIED_CLOSE(Real(0), qbs.prime(t), 1200*std::numeric_limits<Real>::epsilon());
CHECK_MOLLIFIED_CLOSE(Real(0), qbs.double_prime(t), 38000*std::numeric_limits<Real>::epsilon());
++i;
}
}
template<class Real>
void test_linear()
{
using std::abs;
Real m = 8.3;
Real b = 7.2;
Real t0 = 0;
Real h = Real(1)/Real(16);
size_t n = 512;
std::vector<Real> y(n);
for (size_t i = 0; i < n; ++i) {
Real t = i*h;
y[i] = m*t + b;
}
std::pair<Real, Real> left_endpoint_derivatives{m, 0};
std::pair<Real, Real> right_endpoint_derivatives{m, 0};
auto qbs = cardinal_quintic_b_spline<Real>(y.data(), y.size(), t0, h, left_endpoint_derivatives, right_endpoint_derivatives);
size_t i = 0;
while (i < n) {
Real t = t0 + i*h;
if (!CHECK_ULP_CLOSE(m*t+b, qbs(t), 3)) {
std::cerr << " Problem at t = " << t << "\n";
}
if(!CHECK_MOLLIFIED_CLOSE(m, qbs.prime(t), 100*abs(m*t+b)*std::numeric_limits<Real>::epsilon())) {
std::cerr << " Problem at t = " << t << "\n";
}
if(!CHECK_MOLLIFIED_CLOSE(0, qbs.double_prime(t), 10000*abs(m*t+b)*std::numeric_limits<Real>::epsilon())) {
std::cerr << " Problem at t = " << t << "\n";
}
++i;
}
i = 0;
while (i < n - 1) {
Real t = t0 + i*h + h/2;
if(!CHECK_ULP_CLOSE(m*t+b, qbs(t), 4)) {
std::cerr << " Problem at t = " << t << "\n";
}
CHECK_MOLLIFIED_CLOSE(m, qbs.prime(t), 1500*std::numeric_limits<Real>::epsilon());
t = t0 + i*h + h/4;
if(!CHECK_ULP_CLOSE(m*t+b, qbs(t), 4)) {
std::cerr << " Problem at t = " << t << "\n";
}
CHECK_MOLLIFIED_CLOSE(m, qbs.prime(t), 3000*std::numeric_limits<Real>::epsilon());
++i;
}
}
template<class Real>
void test_linear_estimate_derivatives()
{
using std::abs;
Real m = 8.3;
Real b = 7.2;
Real t0 = 0;
Real h = Real(1)/Real(16);
size_t n = 512;
std::vector<Real> y(n);
for (size_t i = 0; i < n; ++i) {
Real t = i*h;
y[i] = m*t + b;
}
auto qbs = cardinal_quintic_b_spline<Real>(y.data(), y.size(), t0, h);
size_t i = 0;
while (i < n) {
Real t = t0 + i*h;
if (!CHECK_ULP_CLOSE(m*t+b, qbs(t), 3)) {
std::cerr << " Problem at t = " << t << "\n";
}
if(!CHECK_MOLLIFIED_CLOSE(m, qbs.prime(t), 100*abs(m*t+b)*std::numeric_limits<Real>::epsilon())) {
std::cerr << " Problem at t = " << t << "\n";
}
if(!CHECK_MOLLIFIED_CLOSE(0, qbs.double_prime(t), 20000*abs(m*t+b)*std::numeric_limits<Real>::epsilon())) {
std::cerr << " Problem at t = " << t << "\n";
}
++i;
}
i = 0;
while (i < n - 1) {
Real t = t0 + i*h + h/2;
if(!CHECK_ULP_CLOSE(m*t+b, qbs(t), 5)) {
std::cerr << " Problem at t = " << t << "\n";
}
CHECK_MOLLIFIED_CLOSE(m, qbs.prime(t), 1500*std::numeric_limits<Real>::epsilon());
t = t0 + i*h + h/4;
if(!CHECK_ULP_CLOSE(m*t+b, qbs(t), 4)) {
std::cerr << " Problem at t = " << t << "\n";
}
CHECK_MOLLIFIED_CLOSE(m, qbs.prime(t), 3000*std::numeric_limits<Real>::epsilon());
++i;
}
}
template<class Real>
void test_quadratic()
{
Real a = Real(1)/Real(16);
Real b = -3.5;
Real c = -9;
Real t0 = 0;
Real h = Real(1)/Real(16);
size_t n = 513;
std::vector<Real> y(n);
for (size_t i = 0; i < n; ++i) {
Real t = i*h;
y[i] = a*t*t + b*t + c;
}
Real t_max = t0 + (n-1)*h;
std::pair<Real, Real> left_endpoint_derivatives{b, 2*a};
std::pair<Real, Real> right_endpoint_derivatives{2*a*t_max + b, 2*a};
auto qbs = cardinal_quintic_b_spline<Real>(y, t0, h, left_endpoint_derivatives, right_endpoint_derivatives);
size_t i = 0;
while (i < n) {
Real t = t0 + i*h;
CHECK_ULP_CLOSE(a*t*t + b*t + c, qbs(t), 3);
++i;
}
i = 0;
while (i < n -1) {
Real t = t0 + i*h + h/2;
if(!CHECK_ULP_CLOSE(a*t*t + b*t + c, qbs(t), 5)) {
std::cerr << " Problem at abscissa t = " << t << "\n";
}
t = t0 + i*h + h/4;
if (!CHECK_ULP_CLOSE(a*t*t + b*t + c, qbs(t), 5)) {
std::cerr << " Problem abscissa t = " << t << "\n";
}
++i;
}
}
template<class Real>
void test_quadratic_estimate_derivatives()
{
Real a = Real(1)/Real(16);
Real b = -3.5;
Real c = -9;
Real t0 = 0;
Real h = Real(1)/Real(16);
size_t n = 513;
std::vector<Real> y(n);
for (size_t i = 0; i < n; ++i) {
Real t = i*h;
y[i] = a*t*t + b*t + c;
}
auto qbs = cardinal_quintic_b_spline<Real>(y, t0, h);
size_t i = 0;
while (i < n) {
Real t = t0 + i*h;
CHECK_ULP_CLOSE(a*t*t + b*t + c, qbs(t), 3);
++i;
}
i = 0;
while (i < n -1) {
Real t = t0 + i*h + h/2;
if(!CHECK_ULP_CLOSE(a*t*t + b*t + c, qbs(t), 10)) {
std::cerr << " Problem at abscissa t = " << t << "\n";
}
t = t0 + i*h + h/4;
if (!CHECK_ULP_CLOSE(a*t*t + b*t + c, qbs(t), 6)) {
std::cerr << " Problem abscissa t = " << t << "\n";
}
++i;
}
}
int main()
{
test_constant<double>();
test_constant<long double>();
test_constant_estimate_derivatives<double>();
test_constant_estimate_derivatives<long double>();
test_linear<float>();
test_linear<double>();
test_linear<long double>();
test_linear_estimate_derivatives<double>();
test_linear_estimate_derivatives<long double>();
test_quadratic<double>();
test_quadratic<long double>();
test_quadratic_estimate_derivatives<double>();
test_quadratic_estimate_derivatives<long double>();
#ifdef BOOST_HAS_FLOAT128
test_constant<float128>();
test_linear<float128>();
test_linear_estimate_derivatives<float128>();
#endif
return boost::math::test::report_errors();
}