math/test/gauss_quadrature_test.cpp
2019-08-10 08:50:12 -04:00

516 lines
17 KiB
C++

// Copyright Nick Thompson, 2017
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
#define BOOST_TEST_MODULE tanh_sinh_quadrature_test
#include <complex>
//#include <boost/multiprecision/mpc.hpp>
#include <boost/config.hpp>
#include <boost/detail/workaround.hpp>
#if !defined(BOOST_NO_CXX11_DECLTYPE) && !defined(BOOST_NO_CXX11_TRAILING_RESULT_TYPES) && !defined(BOOST_NO_SFINAE_EXPR)
#include <boost/math/concepts/real_concept.hpp>
#include <boost/test/included/unit_test.hpp>
#include <boost/test/tools/floating_point_comparison.hpp>
#include <boost/math/quadrature/gauss.hpp>
#include <boost/math/special_functions/sinc.hpp>
#include <boost/multiprecision/cpp_bin_float.hpp>
#include <boost/multiprecision/cpp_complex.hpp>
#ifdef BOOST_HAS_FLOAT128
#include <boost/multiprecision/complex128.hpp>
#endif
#ifdef _MSC_VER
#pragma warning(disable:4127) // Conditional expression is constant
#endif
#if !defined(TEST1) && !defined(TEST2) && !defined(TEST3)
# define TEST1
# define TEST2
# define TEST3
#endif
using std::expm1;
using std::atan;
using std::tan;
using std::log;
using std::log1p;
using std::asinh;
using std::atanh;
using std::sqrt;
using std::isnormal;
using std::abs;
using std::sinh;
using std::tanh;
using std::cosh;
using std::pow;
using std::exp;
using std::sin;
using std::cos;
using std::string;
using boost::math::quadrature::gauss;
using boost::math::constants::pi;
using boost::math::constants::half_pi;
using boost::math::constants::two_div_pi;
using boost::math::constants::two_pi;
using boost::math::constants::half;
using boost::math::constants::third;
using boost::math::constants::half;
using boost::math::constants::third;
using boost::math::constants::catalan;
using boost::math::constants::ln_two;
using boost::math::constants::root_two;
using boost::math::constants::root_two_pi;
using boost::math::constants::root_pi;
using boost::multiprecision::cpp_bin_float_quad;
//
// Error rates depend only on the number of points in the approximation, not the type being tested,
// define all our expected errors here:
//
enum
{
test_ca_error_id,
test_ca_error_id_2,
test_three_quad_error_id,
test_three_quad_error_id_2,
test_integration_over_real_line_error_id,
test_right_limit_infinite_error_id,
test_left_limit_infinite_error_id
};
template <unsigned Points>
double expected_error(unsigned)
{
return 0; // placeholder, all tests will fail
}
template <>
double expected_error<7>(unsigned id)
{
switch (id)
{
case test_ca_error_id:
return 1e-7;
case test_ca_error_id_2:
return 2e-5;
case test_three_quad_error_id:
return 1e-8;
case test_three_quad_error_id_2:
return 3.5e-3;
case test_integration_over_real_line_error_id:
return 6e-3;
case test_right_limit_infinite_error_id:
case test_left_limit_infinite_error_id:
return 1e-5;
}
return 0; // placeholder, all tests will fail
}
template <>
double expected_error<9>(unsigned id)
{
switch (id)
{
case test_ca_error_id:
return 1e-7;
case test_ca_error_id_2:
return 2e-5;
case test_three_quad_error_id:
return 1e-8;
case test_three_quad_error_id_2:
return 3.5e-3;
case test_integration_over_real_line_error_id:
return 6e-3;
case test_right_limit_infinite_error_id:
case test_left_limit_infinite_error_id:
return 1e-5;
}
return 0; // placeholder, all tests will fail
}
template <>
double expected_error<10>(unsigned id)
{
switch (id)
{
case test_ca_error_id:
return 1e-12;
case test_ca_error_id_2:
return 3e-6;
case test_three_quad_error_id:
return 2e-13;
case test_three_quad_error_id_2:
return 2e-3;
case test_integration_over_real_line_error_id:
return 6e-3; // doesn't get any better with more points!
case test_right_limit_infinite_error_id:
case test_left_limit_infinite_error_id:
return 5e-8;
}
return 0; // placeholder, all tests will fail
}
template <>
double expected_error<15>(unsigned id)
{
switch (id)
{
case test_ca_error_id:
return 6e-20;
case test_ca_error_id_2:
return 3e-7;
case test_three_quad_error_id:
return 1e-19;
case test_three_quad_error_id_2:
return 6e-4;
case test_integration_over_real_line_error_id:
return 6e-3; // doesn't get any better with more points!
case test_right_limit_infinite_error_id:
case test_left_limit_infinite_error_id:
return 5e-11;
}
return 0; // placeholder, all tests will fail
}
template <>
double expected_error<20>(unsigned id)
{
switch (id)
{
case test_ca_error_id:
return 1e-26;
case test_ca_error_id_2:
return 1e-7;
case test_three_quad_error_id:
return 3e-27;
case test_three_quad_error_id_2:
return 3e-4;
case test_integration_over_real_line_error_id:
return 5e-5; // doesn't get any better with more points!
case test_right_limit_infinite_error_id:
case test_left_limit_infinite_error_id:
return 1e-15;
}
return 0; // placeholder, all tests will fail
}
template <>
double expected_error<25>(unsigned id)
{
switch (id)
{
case test_ca_error_id:
return 5e-33;
case test_ca_error_id_2:
return 1e-8;
case test_three_quad_error_id:
return 1e-32;
case test_three_quad_error_id_2:
return 3e-4;
case test_integration_over_real_line_error_id:
return 1e-14;
case test_right_limit_infinite_error_id:
case test_left_limit_infinite_error_id:
return 3e-19;
}
return 0; // placeholder, all tests will fail
}
template <>
double expected_error<30>(unsigned id)
{
switch (id)
{
case test_ca_error_id:
return 2e-34;
case test_ca_error_id_2:
return 5e-9;
case test_three_quad_error_id:
return 4e-34;
case test_three_quad_error_id_2:
return 1e-4;
case test_integration_over_real_line_error_id:
return 1e-16;
case test_right_limit_infinite_error_id:
case test_left_limit_infinite_error_id:
return 3e-23;
}
return 0; // placeholder, all tests will fail
}
template<class Real, unsigned Points>
void test_linear()
{
std::cout << "Testing linear functions are integrated properly by gauss on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
Real tol = boost::math::tools::epsilon<Real>() * 10;
auto f = [](const Real& x)
{
return 5*x + 7;
};
Real L1;
Real Q = gauss<Real, Points>::integrate(f, (Real) 0, (Real) 1, &L1);
BOOST_CHECK_CLOSE_FRACTION(Q, 9.5, tol);
BOOST_CHECK_CLOSE_FRACTION(L1, 9.5, tol);
}
template<class Real, unsigned Points>
void test_quadratic()
{
std::cout << "Testing quadratic functions are integrated properly by Gaussian quadrature on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
Real tol = boost::math::tools::epsilon<Real>() * 10;
auto f = [](const Real& x) { return 5*x*x + 7*x + 12; };
Real L1;
Real Q = gauss<Real, Points>::integrate(f, 0, 1, &L1);
BOOST_CHECK_CLOSE_FRACTION(Q, (Real) 17 + half<Real>()*third<Real>(), tol);
BOOST_CHECK_CLOSE_FRACTION(L1, (Real) 17 + half<Real>()*third<Real>(), tol);
}
// Examples taken from
//http://crd-legacy.lbl.gov/~dhbailey/dhbpapers/quadrature.pdf
template<class Real, unsigned Points>
void test_ca()
{
std::cout << "Testing integration of C(a) on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
Real tol = expected_error<Points>(test_ca_error_id);
Real L1;
auto f1 = [](const Real& x) { return atan(x)/(x*(x*x + 1)) ; };
Real Q = gauss<Real, Points>::integrate(f1, 0, 1, &L1);
Real Q_expected = pi<Real>()*ln_two<Real>()/8 + catalan<Real>()*half<Real>();
BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol);
BOOST_CHECK_CLOSE_FRACTION(L1, Q_expected, tol);
auto f2 = [](Real x)->Real { Real t0 = x*x + 1; Real t1 = sqrt(t0); return atan(t1)/(t0*t1); };
Q = gauss<Real, Points>::integrate(f2, 0 , 1, &L1);
Q_expected = pi<Real>()/4 - pi<Real>()/root_two<Real>() + 3*atan(root_two<Real>())/root_two<Real>();
BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol);
BOOST_CHECK_CLOSE_FRACTION(L1, Q_expected, tol);
tol = expected_error<Points>(test_ca_error_id_2);
auto f5 = [](Real t)->Real { return t*t*log(t)/((t*t - 1)*(t*t*t*t + 1)); };
Q = gauss<Real, Points>::integrate(f5, 0 , 1);
Q_expected = pi<Real>()*pi<Real>()*(2 - root_two<Real>())/32;
BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol);
}
template<class Real, unsigned Points>
void test_three_quadrature_schemes_examples()
{
std::cout << "Testing integral in 'A Comparison of Three High Precision Quadrature Schemes' on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
Real tol = expected_error<Points>(test_three_quad_error_id);
Real Q;
Real Q_expected;
// Example 1:
auto f1 = [](const Real& t) { return t*boost::math::log1p(t); };
Q = gauss<Real, Points>::integrate(f1, 0 , 1);
Q_expected = half<Real>()*half<Real>();
BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol);
// Example 2:
auto f2 = [](const Real& t) { return t*t*atan(t); };
Q = gauss<Real, Points>::integrate(f2, 0 , 1);
Q_expected = (pi<Real>() -2 + 2*ln_two<Real>())/12;
BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, 2 * tol);
// Example 3:
auto f3 = [](const Real& t) { return exp(t)*cos(t); };
Q = gauss<Real, Points>::integrate(f3, 0, half_pi<Real>());
Q_expected = boost::math::expm1(half_pi<Real>())*half<Real>();
BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol);
// Example 4:
auto f4 = [](Real x)->Real { Real t0 = sqrt(x*x + 2); return atan(t0)/(t0*(x*x+1)); };
Q = gauss<Real, Points>::integrate(f4, 0 , 1);
Q_expected = 5*pi<Real>()*pi<Real>()/96;
BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol);
tol = expected_error<Points>(test_three_quad_error_id_2);
// Example 5:
auto f5 = [](const Real& t) { return sqrt(t)*log(t); };
Q = gauss<Real, Points>::integrate(f5, 0 , 1);
Q_expected = -4/ (Real) 9;
BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol);
// Example 6:
auto f6 = [](const Real& t) { return sqrt(1 - t*t); };
Q = gauss<Real, Points>::integrate(f6, 0 , 1);
Q_expected = pi<Real>()/4;
BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol);
}
template<class Real, unsigned Points>
void test_integration_over_real_line()
{
std::cout << "Testing integrals over entire real line in 'A Comparison of Three High Precision Quadrature Schemes' on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
Real tol = expected_error<Points>(test_integration_over_real_line_error_id);
Real Q;
Real Q_expected;
Real L1;
auto f1 = [](const Real& t) { return 1/(1+t*t);};
Q = gauss<Real, Points>::integrate(f1, -boost::math::tools::max_value<Real>(), boost::math::tools::max_value<Real>(), &L1);
Q_expected = pi<Real>();
BOOST_CHECK_CLOSE_FRACTION(Q, Q_expected, tol);
BOOST_CHECK_CLOSE_FRACTION(L1, Q_expected, tol);
}
template<class Real, unsigned Points>
void test_right_limit_infinite()
{
std::cout << "Testing right limit infinite for Gaussian quadrature in 'A Comparison of Three High Precision Quadrature Schemes' on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
Real tol = expected_error<Points>(test_right_limit_infinite_error_id);
Real Q;
Real Q_expected;
Real L1;
// Example 11:
auto f1 = [](const Real& t) { return 1/(1+t*t);};
Q = gauss<Real, Points>::integrate(f1, 0, boost::math::tools::max_value<Real>(), &L1);
Q_expected = half_pi<Real>();
BOOST_CHECK_CLOSE(Q, Q_expected, 100*tol);
auto f4 = [](const Real& t) { return 1/(1+t*t); };
Q = gauss<Real, Points>::integrate(f4, 1, boost::math::tools::max_value<Real>(), &L1);
Q_expected = pi<Real>()/4;
BOOST_CHECK_CLOSE(Q, Q_expected, 100*tol);
}
template<class Real, unsigned Points>
void test_left_limit_infinite()
{
std::cout << "Testing left limit infinite for Gaussian quadrature in 'A Comparison of Three High Precision Quadrature Schemes' on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
Real tol = expected_error<Points>(test_left_limit_infinite_error_id);
Real Q;
Real Q_expected;
// Example 11:
auto f1 = [](const Real& t) { return 1/(1+t*t);};
Q = gauss<Real, Points>::integrate(f1, -boost::math::tools::max_value<Real>(), Real(0));
Q_expected = half_pi<Real>();
BOOST_CHECK_CLOSE(Q, Q_expected, 100*tol);
}
template<class Complex>
void test_complex_lambert_w()
{
std::cout << "Testing that complex-valued integrands are integrated correctly by Gaussian quadrature on type " << boost::typeindex::type_id<Complex>().pretty_name() << "\n";
typedef typename Complex::value_type Real;
Real tol = 10e-9;
using boost::math::constants::pi;
Complex z{2, 3};
auto lw = [&z](Real v)->Complex {
using std::cos;
using std::sin;
using std::exp;
Real sinv = sin(v);
Real cosv = cos(v);
Real cotv = cosv/sinv;
Real cscv = 1/sinv;
Real t = (1-v*cotv)*(1-v*cotv) + v*v;
Real x = v*cscv*exp(-v*cotv);
Complex den = z + x;
Complex num = t*(z/pi<Real>());
Complex res = num/den;
return res;
};
//N[ProductLog[2+3*I], 150]
Complex Q = gauss<Real, 30>::integrate(lw, (Real) 0, pi<Real>());
BOOST_CHECK_CLOSE_FRACTION(Q.real(), boost::lexical_cast<Real>("1.09007653448579084630177782678166964987102108635357778056449870727913321296238687023915522935120701763447787503167111962008709116746523970476893277703"), tol);
BOOST_CHECK_CLOSE_FRACTION(Q.imag(), boost::lexical_cast<Real>("0.530139720774838801426860213574121741928705631382703178297940568794784362495390544411799468140433404536019992695815009036975117285537382995180319280835"), tol);
}
BOOST_AUTO_TEST_CASE(gauss_quadrature_test)
{
#ifdef TEST1
test_linear<double, 7>();
test_quadratic<double, 7>();
test_ca<double, 7>();
test_three_quadrature_schemes_examples<double, 7>();
test_integration_over_real_line<double, 7>();
test_right_limit_infinite<double, 7>();
test_left_limit_infinite<double, 7>();
test_linear<double, 9>();
test_quadratic<double, 9>();
test_ca<double, 9>();
test_three_quadrature_schemes_examples<double, 9>();
test_integration_over_real_line<double, 9>();
test_right_limit_infinite<double, 9>();
test_left_limit_infinite<double, 9>();
test_linear<cpp_bin_float_quad, 10>();
test_quadratic<cpp_bin_float_quad, 10>();
test_ca<cpp_bin_float_quad, 10>();
test_three_quadrature_schemes_examples<cpp_bin_float_quad, 10>();
test_integration_over_real_line<cpp_bin_float_quad, 10>();
test_right_limit_infinite<cpp_bin_float_quad, 10>();
test_left_limit_infinite<cpp_bin_float_quad, 10>();
#endif
#ifdef TEST2
test_linear<cpp_bin_float_quad, 15>();
test_quadratic<cpp_bin_float_quad, 15>();
test_ca<cpp_bin_float_quad, 15>();
test_three_quadrature_schemes_examples<cpp_bin_float_quad, 15>();
test_integration_over_real_line<cpp_bin_float_quad, 15>();
test_right_limit_infinite<cpp_bin_float_quad, 15>();
test_left_limit_infinite<cpp_bin_float_quad, 15>();
test_linear<cpp_bin_float_quad, 20>();
test_quadratic<cpp_bin_float_quad, 20>();
test_ca<cpp_bin_float_quad, 20>();
test_three_quadrature_schemes_examples<cpp_bin_float_quad, 20>();
test_integration_over_real_line<cpp_bin_float_quad, 20>();
test_right_limit_infinite<cpp_bin_float_quad, 20>();
test_left_limit_infinite<cpp_bin_float_quad, 20>();
test_linear<cpp_bin_float_quad, 25>();
test_quadratic<cpp_bin_float_quad, 25>();
test_ca<cpp_bin_float_quad, 25>();
test_three_quadrature_schemes_examples<cpp_bin_float_quad, 25>();
test_integration_over_real_line<cpp_bin_float_quad, 25>();
test_right_limit_infinite<cpp_bin_float_quad, 25>();
test_left_limit_infinite<cpp_bin_float_quad, 25>();
test_linear<cpp_bin_float_quad, 30>();
test_quadratic<cpp_bin_float_quad, 30>();
test_ca<cpp_bin_float_quad, 30>();
test_three_quadrature_schemes_examples<cpp_bin_float_quad, 30>();
test_integration_over_real_line<cpp_bin_float_quad, 30>();
test_right_limit_infinite<cpp_bin_float_quad, 30>();
test_left_limit_infinite<cpp_bin_float_quad, 30>();
#endif
#ifdef TEST3
test_left_limit_infinite<cpp_bin_float_quad, 30>();
test_complex_lambert_w<std::complex<double>>();
test_complex_lambert_w<std::complex<long double>>();
#ifdef BOOST_HAS_FLOAT128
test_left_limit_infinite<boost::multiprecision::float128, 30>();
test_complex_lambert_w<boost::multiprecision::complex128>();
#endif
test_complex_lambert_w<boost::multiprecision::cpp_complex_quad>();
#endif
}
#else
int main() { return 0; }
#endif