math/test/math_unit_test.hpp

151 lines
6.2 KiB
C++

// Copyright Nick Thompson, 2019
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_TEST_TEST_HPP
#define BOOST_MATH_TEST_TEST_HPP
#include <atomic>
#include <iostream>
#include <iomanip>
#include <cmath> // for std::isnan
#include <boost/assert.hpp>
#include <boost/math/special_functions/next.hpp>
#include <boost/core/demangle.hpp>
namespace boost { namespace math { namespace test {
namespace detail {
static std::atomic<int64_t> global_error_count{0};
static std::atomic<int64_t> total_ulp_distance{0};
}
template<class Real>
bool check_mollified_close(Real expected, Real computed, Real tol, std::string const & filename, std::string const & function, int line)
{
using std::isnan;
BOOST_ASSERT_MSG(!isnan(tol), "Tolerance cannot be a nan.");
BOOST_ASSERT_MSG(!isnan(expected), "Expected value cannot be a nan.");
BOOST_ASSERT_MSG(tol >= 0, "Tolerance must be non-negative.");
if (isnan(computed)) {
std::ios_base::fmtflags f( std::cerr.flags() );
std::cerr << std::setprecision(3);
std::cerr << "\033[0;31mError at " << filename << ":" << function << ":" << line << ":\n"
<< " \033[0m Computed value is a nan\n";
std::cerr.flags(f);
++detail::global_error_count;
return false;
}
using std::max;
using std::abs;
Real denom = (max)(abs(expected), Real(1));
Real mollified_relative_error = abs(expected - computed)/denom;
if (mollified_relative_error > tol)
{
Real dist = abs(boost::math::float_distance(expected, computed));
detail::total_ulp_distance += static_cast<int64_t>(dist);
std::ios_base::fmtflags f( std::cerr.flags() );
std::cerr << std::setprecision(3);
std::cerr << "\033[0;31mError at " << filename << ":" << function << ":" << line << ":\n"
<< " \033[0m Mollified relative error in " << boost::core::demangle(typeid(Real).name())<< " precision is " << mollified_relative_error
<< ", which exceeds " << tol << ", error/tol = " << mollified_relative_error/tol << ".\n"
<< std::setprecision(std::numeric_limits<Real>::digits10) << std::showpos
<< " Expected: " << std::defaultfloat << std::fixed << expected << std::hexfloat << " = " << expected << "\n"
<< " Computed: " << std::defaultfloat << std::fixed << computed << std::hexfloat << " = " << computed << "\n"
<< std::defaultfloat
<< " ULP distance: " << dist << "\n";
std::cerr.flags(f);
++detail::global_error_count;
return false;
}
return true;
}
template<class PreciseReal, class Real>
bool check_ulp_close(PreciseReal expected1, Real computed, size_t ulps, std::string const & filename, std::string const & function, int line)
{
using std::max;
using std::abs;
using std::isnan;
// Of course integers can be expected values, and they are exact:
if (!std::is_integral<PreciseReal>::value) {
BOOST_ASSERT_MSG(sizeof(PreciseReal) >= sizeof(Real),
"The expected number must be computed in higher (or equal) precision than the number being tested.");
BOOST_ASSERT_MSG(!isnan(expected1), "Expected value cannot be a nan.");
}
if (isnan(computed))
{
std::ios_base::fmtflags f( std::cerr.flags() );
std::cerr << std::setprecision(3);
std::cerr << "\033[0;31mError at " << filename << ":" << function << ":" << line << ":\n"
<< " \033[0m Computed value is a nan\n";
std::cerr.flags(f);
++detail::global_error_count;
return false;
}
Real expected = Real(expected1);
Real dist = abs(boost::math::float_distance(expected, computed));
if (dist > ulps)
{
detail::total_ulp_distance += static_cast<int64_t>(dist);
Real denom = (max)(abs(expected), Real(1));
Real mollified_relative_error = abs(expected - computed)/denom;
std::ios_base::fmtflags f( std::cerr.flags() );
std::cerr << std::setprecision(3);
std::cerr << "\033[0;31mError at " << filename << ":" << function << ":" << line << ":\n"
<< " \033[0m ULP distance in " << boost::core::demangle(typeid(Real).name())<< " precision is " << dist
<< ", which exceeds " << ulps;
if (ulps > 0)
{
std::cerr << ", error/ulps = " << dist/static_cast<Real>(ulps) << ".\n";
}
else
{
std::cerr << ".\n";
}
std::cerr << std::setprecision(std::numeric_limits<Real>::digits10) << std::showpos
<< " Expected: " << std::defaultfloat << std::fixed << expected << std::hexfloat << " = " << expected << "\n"
<< " Computed: " << std::defaultfloat << std::fixed << computed << std::hexfloat << " = " << computed << "\n"
<< std::defaultfloat
<< " Mollified relative error: " << mollified_relative_error << "\n";
std::cerr.flags(f);
++detail::global_error_count;
return false;
}
return true;
}
int report_errors()
{
if (detail::global_error_count > 0)
{
std::cerr << "\033[0;31mError count: " << detail::global_error_count;
if (detail::total_ulp_distance > 0) {
std::cerr << ", total ulp distance = " << detail::total_ulp_distance << "\n\033[0m";
}
else {
// else we overflowed the ULPs counter and all we could print is a bizarre negative number.
std::cerr << "\n\033[0m";
}
detail::global_error_count = 0;
detail::total_ulp_distance = 0;
return 1;
}
std::cout << "\x1B[32mNo errors detected.\n\033[0m";
return 0;
}
}}}
#define CHECK_MOLLIFIED_CLOSE(X, Y, Z) boost::math::test::check_mollified_close< typename std::remove_reference<decltype((Y))>::type>((X), (Y), (Z), __FILE__, __func__, __LINE__)
#define CHECK_ULP_CLOSE(X, Y, Z) boost::math::test::check_ulp_close((X), (Y), (Z), __FILE__, __func__, __LINE__)
#endif