math/test/ooura_fourier_integral_test.cpp

378 lines
13 KiB
C++

// Copyright Nick Thompson, 2019
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
#define BOOST_TEST_MODULE test_ooura_fourier_transform
#include <cmath>
#include <iostream>
#include <boost/type_index.hpp>
#include <boost/test/included/unit_test.hpp>
#include <boost/test/tools/floating_point_comparison.hpp>
#include <boost/math/quadrature/ooura_fourier_integrals.hpp>
#include <boost/multiprecision/cpp_bin_float.hpp>
using boost::math::quadrature::ooura_fourier_sin;
using boost::math::quadrature::ooura_fourier_cos;
using boost::math::constants::pi;
float float_tol = 10*std::numeric_limits<float>::epsilon();
ooura_fourier_sin<float> float_sin_integrator(float_tol);
double double_tol = 10*std::numeric_limits<double>::epsilon();
ooura_fourier_sin<double> double_sin_integrator(double_tol);
long double long_double_tol = 10*std::numeric_limits<long double>::epsilon();
ooura_fourier_sin<long double> long_double_sin_integrator(long_double_tol);
template<class Real>
auto get_sin_integrator() {
if constexpr (std::is_same_v<Real, float>) {
return float_sin_integrator;
}
if constexpr (std::is_same_v<Real, double>) {
return double_sin_integrator;
}
if constexpr (std::is_same_v<Real, long double>) {
return long_double_sin_integrator;
}
}
ooura_fourier_cos<float> float_cos_integrator(float_tol);
ooura_fourier_cos<double> double_cos_integrator(double_tol);
ooura_fourier_cos<long double> long_double_cos_integrator(long_double_tol);
template<class Real>
auto get_cos_integrator() {
if constexpr (std::is_same_v<Real, float>) {
return float_cos_integrator;
}
if constexpr (std::is_same_v<Real, double>) {
return double_cos_integrator;
}
if constexpr (std::is_same_v<Real, long double>) {
return long_double_cos_integrator;
}
}
template<class Real>
void test_ooura_eta()
{
using boost::math::quadrature::detail::ooura_eta;
std::cout << "Testing eta function on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
{
Real x = 0;
Real alpha = 7;
auto [eta, eta_prime] = ooura_eta(x, alpha);
BOOST_CHECK_SMALL(eta, (std::numeric_limits<Real>::min)());
BOOST_CHECK_CLOSE_FRACTION(eta_prime, 2 + alpha + Real(1)/Real(4), 10*std::numeric_limits<Real>::epsilon());
}
{
Real alpha = 4;
for (Real z = 0.125; z < 500; z += 0.125) {
Real x = std::log(z);
auto [eta, eta_prime] = ooura_eta(x, alpha);
BOOST_CHECK_CLOSE_FRACTION(eta, 2*x + alpha*(1-1/z) + (z-1)/4, 10*std::numeric_limits<Real>::epsilon());
BOOST_CHECK_CLOSE_FRACTION(eta_prime, 2 + alpha/z + z/4, 10*std::numeric_limits<Real>::epsilon());
}
}
}
template<class Real>
void test_ooura_sin_nodes_and_weights()
{
using boost::math::quadrature::detail::ooura_sin_node_and_weight;
using boost::math::quadrature::detail::ooura_eta;
std::cout << "Testing nodes and weights on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
{
long n = 1;
Real alpha = 1;
Real h = 1;
auto [node, weight] = ooura_sin_node_and_weight(n, h, alpha);
Real expected_node = pi<Real>()/(1-exp(-ooura_eta(n*h, alpha).first));
BOOST_CHECK_CLOSE_FRACTION(node, expected_node,10*std::numeric_limits<Real>::epsilon());
}
}
template<class Real>
void test_ooura_alpha() {
std::cout << "Testing Ooura alpha on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
using std::sqrt;
using std::log1p;
using boost::math::quadrature::detail::calculate_ooura_alpha;
Real alpha = calculate_ooura_alpha(Real(1));
Real expected = 1/sqrt(16 + 4*log1p(pi<Real>()));
BOOST_CHECK_CLOSE_FRACTION(alpha, expected, 10*std::numeric_limits<Real>::epsilon());
}
void test_node_weight_precision_agreement()
{
using std::abs;
using boost::math::quadrature::detail::ooura_sin_node_and_weight;
using boost::math::quadrature::detail::ooura_eta;
using boost::multiprecision::cpp_bin_float_quad;
std::cout << "Testing agreement in two different precisions of nodes and weights\n";
cpp_bin_float_quad alpha_quad = 1;
long int_max = 128;
cpp_bin_float_quad h_quad = 1/cpp_bin_float_quad(int_max);
double alpha_dbl = 1;
double h_dbl = static_cast<double>(h_quad);
std::cout << std::fixed;
for (long n = -1; n > -6*int_max; --n) {
auto [node_dbl, weight_dbl] = ooura_sin_node_and_weight(n, h_dbl, alpha_dbl);
auto p = ooura_sin_node_and_weight(n, h_quad, alpha_quad);
double node_quad = static_cast<double>(p.first);
double weight_quad = static_cast<double>(p.second);
auto node_dist = abs(boost::math::float_distance(node_quad, node_dbl));
if ( (weight_quad < 0 && weight_dbl > 0) || (weight_dbl < 0 && weight_quad > 0) ){
std::cout << "Weights at different precisions have different signs!\n";
} else {
auto weight_dist = abs(boost::math::float_distance(weight_quad, weight_dbl));
if (weight_dist > 100) {
std::cout << std::fixed;
std::cout <<"n =" << n << ", x = " << n*h_dbl << ", node distance = " << node_dist << ", weight distance = " << weight_dist << "\n";
std::cout << std::scientific;
std::cout << "computed weight = " << weight_dbl << ", actual weight = " << weight_quad << "\n";
}
}
}
}
template<class Real>
void test_sinc()
{
std::cout << "Testing sinc integral on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
using std::numeric_limits;
Real tol = 50*numeric_limits<Real>::epsilon();
auto integrator = get_sin_integrator<Real>();
auto f = [](Real x)->Real { return 1/x; };
Real omega = 1;
while (omega < 10)
{
auto [Is, err] = integrator.integrate(f, omega);
BOOST_CHECK_CLOSE_FRACTION(Is, pi<Real>()/2, tol);
auto [Isn, errn] = integrator.integrate(f, -omega);
BOOST_CHECK_CLOSE_FRACTION(Isn, -pi<Real>()/2, tol);
omega += 1;
}
}
template<class Real>
void test_exp()
{
std::cout << "Testing exponential integral on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
using std::exp;
using std::numeric_limits;
Real tol = 50*numeric_limits<Real>::epsilon();
auto integrator = get_sin_integrator<Real>();
auto f = [](Real x)->Real {return exp(-x);};
Real omega = 1;
while (omega < 5)
{
auto [Is, err] = integrator.integrate(f, omega);
Real exact = omega/(1+omega*omega);
BOOST_CHECK_CLOSE_FRACTION(Is, exact, tol);
omega += 1;
}
}
template<class Real>
void test_root()
{
std::cout << "Testing integral of sin(kx)/sqrt(x) on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
using std::sqrt;
using std::numeric_limits;
Real tol = 10*numeric_limits<Real>::epsilon();
auto integrator = get_sin_integrator<Real>();
auto f = [](Real x)->Real { return 1/sqrt(x);};
Real omega = 1;
while (omega < 5) {
auto [Is, err] = integrator.integrate(f, omega);
Real exact = sqrt(pi<Real>()/(2*omega));
BOOST_CHECK_CLOSE_FRACTION(Is, exact, 10*tol);
omega += 1;
}
}
// See: https://scicomp.stackexchange.com/questions/32790/numerical-evaluation-of-highly-oscillatory-integral/32799#32799
template<class Real>
Real asymptotic(Real lambda) {
using std::sin;
using std::cos;
using boost::math::constants::pi;
Real I1 = cos(lambda - pi<Real>()/4)*sqrt(2*pi<Real>()/lambda);
Real I2 = sin(lambda - pi<Real>()/4)*sqrt(2*pi<Real>()/(lambda*lambda*lambda))/8;
return I1 + I2;
}
template<class Real>
void test_double_osc()
{
std::cout << "Testing double oscillation on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
using std::sqrt;
using std::numeric_limits;
auto integrator = get_sin_integrator<Real>();
Real lambda = 7;
auto f = [&lambda](Real x)->Real { return cos(lambda*cos(x))/x; };
Real omega = 1;
auto [Is, err] = integrator.integrate(f, omega);
Real exact = asymptotic(lambda);
BOOST_CHECK_CLOSE_FRACTION(2*Is, exact, 0.05);
}
template<class Real>
void test_zero_integrand()
{
// Make sure relative error tolerance doesn't break on zero integrand:
std::cout << "Testing zero integrand on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
using std::sqrt;
using std::numeric_limits;
auto integrator = get_sin_integrator<Real>();
auto f = [](Real /* x */)->Real { return Real(0); };
Real omega = 1;
auto [Is, err] = integrator.integrate(f, omega);
Real exact = 0;
BOOST_CHECK_EQUAL(Is, exact);
}
// This works, but doesn't recover the precision you want in a unit test:
// template<class Real>
// void test_log()
// {
// std::cout << "Testing integral of log(x)sin(x) on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
// using std::log;
// using std::exp;
// using std::numeric_limits;
// using boost::math::constants::euler;
// Real tol = 1000*numeric_limits<Real>::epsilon();
// auto f = [](Real x)->Real { return exp(-100*numeric_limits<Real>::epsilon()*x)*log(x);};
// Real omega = 1;
// Real Is = ooura_fourier_sin<decltype(f), Real>(f, omega, sqrt(numeric_limits<Real>::epsilon())/100);
// BOOST_CHECK_CLOSE_FRACTION(Is, -euler<Real>(), tol);
// }
template<class Real>
void test_cos_integral1()
{
std::cout << "Testing integral of cos(x)/(x*x+1) on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
using std::exp;
using boost::math::constants::half_pi;
using boost::math::constants::e;
using std::numeric_limits;
Real tol = 10*numeric_limits<Real>::epsilon();
auto integrator = get_cos_integrator<Real>();
auto f = [](Real x)->Real { return 1/(x*x+1);};
Real omega = 1;
auto [Is, err] = integrator.integrate(f, omega);
Real exact = half_pi<Real>()/e<Real>();
BOOST_CHECK_CLOSE_FRACTION(Is, exact, tol);
}
template<class Real>
void test_cos_integral2()
{
std::cout << "Testing integral of exp(-a*x) on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
using std::exp;
using boost::math::constants::half_pi;
using boost::math::constants::e;
using std::numeric_limits;
Real tol = 10*numeric_limits<Real>::epsilon();
auto integrator = get_cos_integrator<Real>();
for (Real a = 1; a < 5; ++a) {
auto f = [&a](Real x)->Real { return exp(-a*x);};
for(Real omega = 1; omega < 5; ++omega) {
auto [Is, err] = integrator.integrate(f, omega);
Real exact = a/(a*a+omega*omega);
BOOST_CHECK_CLOSE_FRACTION(Is, exact, 10*tol);
}
}
}
template<class Real>
void test_nodes()
{
std::cout << "Testing nodes and weights on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
auto sin_integrator = get_sin_integrator<Real>();
auto const & big_nodes = sin_integrator.big_nodes();
for (auto & node_row : big_nodes) {
Real t0 = node_row[0];
for (size_t i = 1; i < node_row.size(); ++i) {
Real t1 = node_row[i];
BOOST_CHECK(t1 > t0);
t0 = t1;
}
}
auto const & little_nodes = sin_integrator.little_nodes();
for (auto & node_row : little_nodes) {
Real t0 = node_row[0];
for (size_t i = 1; i < node_row.size(); ++i) {
Real t1 = node_row[i];
BOOST_CHECK(t1 < t0);
t0 = t1;
}
}
}
BOOST_AUTO_TEST_CASE(ooura_fourier_transform_test)
{
test_cos_integral1<float>();
test_cos_integral1<double>();
test_cos_integral1<long double>();
test_cos_integral2<float>();
test_cos_integral2<double>();
test_cos_integral2<long double>();
//test_node_weight_precision_agreement();
test_zero_integrand<float>();
test_zero_integrand<double>();
test_ooura_eta<float>();
test_ooura_eta<double>();
test_ooura_eta<long double>();
test_ooura_sin_nodes_and_weights<float>();
test_ooura_sin_nodes_and_weights<double>();
test_ooura_sin_nodes_and_weights<long double>();
test_ooura_alpha<float>();
test_ooura_alpha<double>();
test_ooura_alpha<long double>();
test_sinc<float>();
test_sinc<double>();
test_sinc<long double>();
test_exp<float>();
test_exp<double>();
test_exp<long double>();
test_root<float>();
test_root<double>();
test_double_osc<float>();
test_double_osc<double>();
// Takes too long!
//test_double_osc<long double>();
// This test should be last:
test_nodes<float>();
test_nodes<double>();
test_nodes<long double>();
}