68 lines
2.5 KiB
C++
68 lines
2.5 KiB
C++
// Copyright Matthew Pulver 2018 - 2019.
|
|
// Distributed under the Boost Software License, Version 1.0.
|
|
// (See accompanying file LICENSE_1_0.txt or copy at
|
|
// https://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
#include "test_autodiff.hpp"
|
|
|
|
BOOST_AUTO_TEST_SUITE(test_autodiff_7)
|
|
|
|
BOOST_AUTO_TEST_CASE_TEMPLATE(expm1_hpp, T, all_float_types) {
|
|
using boost::math::differentiation::detail::log;
|
|
using boost::multiprecision::log;
|
|
using std::log;
|
|
using test_constants = test_constants_t<T>;
|
|
static constexpr auto m = test_constants::order;
|
|
test_detail::RandomSample<T> x_sampler{-log(T(2000)), log(T(2000))};
|
|
for (auto i : boost::irange(test_constants::n_samples)) {
|
|
std::ignore = i;
|
|
auto x = x_sampler.next();
|
|
BOOST_CHECK_CLOSE(boost::math::expm1(make_fvar<T, m>(x)).derivative(0u),
|
|
boost::math::expm1(x),
|
|
50 * test_constants::pct_epsilon());
|
|
}
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE_TEMPLATE(fpclassify_hpp, T, all_float_types) {
|
|
using boost::math::fpclassify;
|
|
using boost::math::isfinite;
|
|
using boost::math::isinf;
|
|
using boost::math::isnan;
|
|
using boost::math::isnormal;
|
|
using boost::multiprecision::fpclassify;
|
|
using boost::multiprecision::isfinite;
|
|
using boost::multiprecision::isinf;
|
|
using boost::multiprecision::isnan;
|
|
using boost::multiprecision::isnormal;
|
|
|
|
using test_constants = test_constants_t<T>;
|
|
static constexpr auto m = test_constants::order;
|
|
test_detail::RandomSample<T> x_sampler{-1000, 1000};
|
|
for (auto i : boost::irange(test_constants::n_samples)) {
|
|
std::ignore = i;
|
|
|
|
BOOST_CHECK_EQUAL(fpclassify(make_fvar<T, m>(0)), FP_ZERO);
|
|
BOOST_CHECK_EQUAL(fpclassify(make_fvar<T, m>(10)), FP_NORMAL);
|
|
BOOST_CHECK_EQUAL(
|
|
fpclassify(make_fvar<T, m>(std::numeric_limits<T>::infinity())),
|
|
FP_INFINITE);
|
|
BOOST_CHECK_EQUAL(
|
|
fpclassify(make_fvar<T, m>(std::numeric_limits<T>::quiet_NaN())),
|
|
FP_NAN);
|
|
if (std::numeric_limits<T>::has_denorm != std::denorm_absent) {
|
|
BOOST_CHECK_EQUAL(
|
|
fpclassify(make_fvar<T, m>(std::numeric_limits<T>::denorm_min())),
|
|
FP_SUBNORMAL);
|
|
}
|
|
|
|
BOOST_CHECK(isfinite(make_fvar<T, m>(0)));
|
|
BOOST_CHECK(isnormal(make_fvar<T, m>((std::numeric_limits<T>::min)())));
|
|
BOOST_CHECK(
|
|
!isnormal(make_fvar<T, m>(std::numeric_limits<T>::denorm_min())));
|
|
BOOST_CHECK(isinf(make_fvar<T, m>(std::numeric_limits<T>::infinity())));
|
|
BOOST_CHECK(isnan(make_fvar<T, m>(std::numeric_limits<T>::quiet_NaN())));
|
|
}
|
|
}
|
|
|
|
BOOST_AUTO_TEST_SUITE_END()
|