275 lines
10 KiB
C++
275 lines
10 KiB
C++
// Copyright John Maddock 2006.
|
|
// Copyright Paul A. Bristow 2007, 2009
|
|
// Use, modification and distribution are subject to the
|
|
// Boost Software License, Version 1.0. (See accompanying file
|
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
#include <boost/math/concepts/real_concept.hpp>
|
|
#define BOOST_TEST_MAIN
|
|
#include <boost/test/unit_test.hpp>
|
|
#include <boost/test/tools/floating_point_comparison.hpp>
|
|
#include <boost/math/special_functions/math_fwd.hpp>
|
|
#include <boost/math/tools/stats.hpp>
|
|
#include <boost/math/tools/test.hpp>
|
|
#include <boost/math/constants/constants.hpp>
|
|
#include <boost/type_traits/is_floating_point.hpp>
|
|
#include <boost/array.hpp>
|
|
#include "functor.hpp"
|
|
|
|
#include "handle_test_result.hpp"
|
|
#include "table_type.hpp"
|
|
|
|
#ifndef SC_
|
|
#define SC_(x) static_cast<typename table_type<T>::type>(BOOST_JOIN(x, L))
|
|
#endif
|
|
|
|
template <class Real, class T>
|
|
void test_inverses(const T& data)
|
|
{
|
|
using namespace std;
|
|
//typedef typename T::value_type row_type;
|
|
typedef Real value_type;
|
|
|
|
value_type precision = static_cast<value_type>(ldexp(1.0, 1-boost::math::policies::digits<value_type, boost::math::policies::policy<> >()/2)) * 100;
|
|
if(boost::math::policies::digits<value_type, boost::math::policies::policy<> >() < 50)
|
|
precision = 1; // 1% or two decimal digits, all we can hope for when the input is truncated
|
|
|
|
for(unsigned i = 0; i < data.size(); ++i)
|
|
{
|
|
//
|
|
// These inverse tests are thrown off if the output of the
|
|
// incomplete beta is too close to 1: basically there is insuffient
|
|
// information left in the value we're using as input to the inverse
|
|
// to be able to get back to the original value.
|
|
//
|
|
if(Real(data[i][5]) == 0)
|
|
BOOST_CHECK_EQUAL(boost::math::ibeta_inv(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])), value_type(0));
|
|
else if((1 - Real(data[i][5]) > 0.001)
|
|
&& (fabs(Real(data[i][5])) > 2 * boost::math::tools::min_value<value_type>())
|
|
&& (fabs(Real(data[i][5])) > 2 * boost::math::tools::min_value<double>()))
|
|
{
|
|
value_type inv = boost::math::ibeta_inv(Real(data[i][0]), Real(data[i][1]), Real(data[i][5]));
|
|
BOOST_CHECK_CLOSE(Real(data[i][2]), inv, precision);
|
|
}
|
|
else if(1 == Real(data[i][5]))
|
|
BOOST_CHECK_EQUAL(boost::math::ibeta_inv(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])), value_type(1));
|
|
|
|
if(Real(data[i][6]) == 0)
|
|
BOOST_CHECK_EQUAL(boost::math::ibetac_inv(Real(data[i][0]), Real(data[i][1]), Real(data[i][6])), value_type(1));
|
|
else if((1 - Real(data[i][6]) > 0.001)
|
|
&& (fabs(Real(data[i][6])) > 2 * boost::math::tools::min_value<value_type>())
|
|
&& (fabs(Real(data[i][6])) > 2 * boost::math::tools::min_value<double>()))
|
|
{
|
|
value_type inv = boost::math::ibetac_inv(Real(data[i][0]), Real(data[i][1]), Real(data[i][6]));
|
|
BOOST_CHECK_CLOSE(Real(data[i][2]), inv, precision);
|
|
}
|
|
else if(Real(data[i][6]) == 1)
|
|
BOOST_CHECK_EQUAL(boost::math::ibetac_inv(Real(data[i][0]), Real(data[i][1]), Real(data[i][6])), value_type(0));
|
|
}
|
|
}
|
|
|
|
template <class Real, class T>
|
|
void test_inverses2(const T& data, const char* type_name, const char* test_name)
|
|
{
|
|
#if !(defined(ERROR_REPORTING_MODE) && !defined(IBETA_INV_FUNCTION_TO_TEST))
|
|
//typedef typename T::value_type row_type;
|
|
typedef Real value_type;
|
|
|
|
typedef value_type (*pg)(value_type, value_type, value_type);
|
|
#ifdef IBETA_INV_FUNCTION_TO_TEST
|
|
pg funcp = IBETA_INV_FUNCTION_TO_TEST;
|
|
#elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
|
|
pg funcp = boost::math::ibeta_inv<value_type, value_type, value_type>;
|
|
#else
|
|
pg funcp = boost::math::ibeta_inv;
|
|
#endif
|
|
|
|
boost::math::tools::test_result<value_type> result;
|
|
|
|
std::cout << "Testing " << test_name << " with type " << type_name
|
|
<< "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n";
|
|
|
|
//
|
|
// test ibeta_inv(T, T, T) against data:
|
|
//
|
|
result = boost::math::tools::test_hetero<Real>(
|
|
data,
|
|
bind_func<Real>(funcp, 0, 1, 2),
|
|
extract_result<Real>(3));
|
|
handle_test_result(result, data[result.worst()], result.worst(), type_name, "ibeta_inv", test_name);
|
|
//
|
|
// test ibetac_inv(T, T, T) against data:
|
|
//
|
|
#ifdef IBETAC_INV_FUNCTION_TO_TEST
|
|
funcp = IBETAC_INV_FUNCTION_TO_TEST;
|
|
#elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
|
|
funcp = boost::math::ibetac_inv<value_type, value_type, value_type>;
|
|
#else
|
|
funcp = boost::math::ibetac_inv;
|
|
#endif
|
|
result = boost::math::tools::test_hetero<Real>(
|
|
data,
|
|
bind_func<Real>(funcp, 0, 1, 2),
|
|
extract_result<Real>(4));
|
|
handle_test_result(result, data[result.worst()], result.worst(), type_name, "ibetac_inv", test_name);
|
|
#endif
|
|
}
|
|
|
|
|
|
template <class T>
|
|
void test_beta(T, const char* name)
|
|
{
|
|
#if !defined(ERROR_REPORTING_MODE)
|
|
(void)name;
|
|
//
|
|
// The actual test data is rather verbose, so it's in a separate file
|
|
//
|
|
// The contents are as follows, each row of data contains
|
|
// five items, input value a, input value b, integration limits x, beta(a, b, x) and ibeta(a, b, x):
|
|
//
|
|
#if !defined(TEST_DATA) || (TEST_DATA == 1)
|
|
# include "ibeta_small_data.ipp"
|
|
|
|
test_inverses<T>(ibeta_small_data);
|
|
#endif
|
|
|
|
#if !defined(TEST_DATA) || (TEST_DATA == 2)
|
|
# include "ibeta_data.ipp"
|
|
|
|
test_inverses<T>(ibeta_data);
|
|
#endif
|
|
|
|
#if !defined(TEST_DATA) || (TEST_DATA == 3)
|
|
# include "ibeta_large_data.ipp"
|
|
|
|
test_inverses<T>(ibeta_large_data);
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#if !defined(TEST_DATA) || (TEST_DATA == 4)
|
|
# include "ibeta_inv_data.ipp"
|
|
|
|
test_inverses2<T>(ibeta_inv_data, name, "Inverse incomplete beta");
|
|
#endif
|
|
}
|
|
|
|
template <class T>
|
|
void test_spots(T)
|
|
{
|
|
BOOST_MATH_STD_USING
|
|
//
|
|
// basic sanity checks, tolerance is 100 epsilon expressed as a percentage:
|
|
//
|
|
T tolerance = boost::math::tools::epsilon<T>() * 10000;
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::ibeta_inv(
|
|
static_cast<T>(1),
|
|
static_cast<T>(2),
|
|
static_cast<T>(0.5)),
|
|
static_cast<T>(0.29289321881345247559915563789515096071516406231153L), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::ibeta_inv(
|
|
static_cast<T>(3),
|
|
static_cast<T>(0.5),
|
|
static_cast<T>(0.5)),
|
|
static_cast<T>(0.92096723292382700385142816696980724853063433975470L), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::ibeta_inv(
|
|
static_cast<T>(20.125),
|
|
static_cast<T>(0.5),
|
|
static_cast<T>(0.5)),
|
|
static_cast<T>(0.98862133312917003480022776106012775747685870929920L), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::ibeta_inv(
|
|
static_cast<T>(40),
|
|
static_cast<T>(80),
|
|
static_cast<T>(0.5)),
|
|
static_cast<T>(0.33240456430025026300937492802591128972548660643778L), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::ibeta_inv(
|
|
static_cast<T>(40),
|
|
static_cast<T>(0.5),
|
|
ldexp(T(1), -30)),
|
|
static_cast<T>(0.624305407878048788716096298053941618358257550305573588792717L), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::ibeta_inv(
|
|
static_cast<T>(40),
|
|
static_cast<T>(0.5),
|
|
static_cast<T>(1 - ldexp(T(1), -30))),
|
|
static_cast<T>(0.99999999999999999998286262026583217516676792408012252456039L), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::ibeta_inv(
|
|
static_cast<T>(0.5),
|
|
static_cast<T>(40),
|
|
static_cast<T>(ldexp(T(1), -30))),
|
|
static_cast<T>(1.713737973416782483323207591987747543960774485649459249e-20L), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::ibeta_inv(
|
|
static_cast<T>(0.5),
|
|
static_cast<T>(0.75),
|
|
static_cast<T>(ldexp(T(1), -30))),
|
|
static_cast<T>(1.245132488513853853809715434621955746959615015005382639e-18L), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::ibeta_inv(
|
|
static_cast<T>(0.5),
|
|
static_cast<T>(0.5),
|
|
static_cast<T>(0.25)),
|
|
static_cast<T>(0.1464466094067262377995778189475754803575820311557629L), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::ibeta_inv(
|
|
static_cast<T>(0.5),
|
|
static_cast<T>(0.5),
|
|
static_cast<T>(0.75)),
|
|
static_cast<T>(0.853553390593273762200422181052424519642417968844237018294169L), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::ibeta_inv(
|
|
static_cast<T>(1),
|
|
static_cast<T>(5),
|
|
static_cast<T>(0.125)),
|
|
static_cast<T>(0.026352819384831863473794894078665766580641189002729204514544L), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::ibeta_inv(
|
|
static_cast<T>(5),
|
|
static_cast<T>(1),
|
|
static_cast<T>(0.125)),
|
|
static_cast<T>(0.659753955386447129687000985614820066516734506596709340752903L), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::ibeta_inv(
|
|
static_cast<T>(1),
|
|
static_cast<T>(0.125),
|
|
static_cast<T>(0.125)),
|
|
static_cast<T>(0.656391084194183349609374999999999999999999999999999999999999L), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::ibeta_inv(
|
|
static_cast<T>(0.125),
|
|
static_cast<T>(1),
|
|
static_cast<T>(0.125)),
|
|
static_cast<T>(5.960464477539062500000e-8), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::ibetac_inv(
|
|
static_cast<T>(5),
|
|
static_cast<T>(1),
|
|
static_cast<T>(0.125)),
|
|
static_cast<T>(0.973647180615168136526205105921334233419358810997270795485455L), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::ibetac_inv(
|
|
static_cast<T>(1),
|
|
static_cast<T>(5),
|
|
static_cast<T>(0.125)),
|
|
static_cast<T>(0.340246044613552870312999014385179933483265493403290659247096L), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::ibetac_inv(
|
|
static_cast<T>(0.125),
|
|
static_cast<T>(1),
|
|
static_cast<T>(0.125)),
|
|
static_cast<T>(0.343608915805816650390625000000000000000000000000000000000000L), tolerance);
|
|
BOOST_CHECK_CLOSE(
|
|
::boost::math::ibetac_inv(
|
|
static_cast<T>(1),
|
|
static_cast<T>(0.125),
|
|
static_cast<T>(0.125)),
|
|
static_cast<T>(0.99999994039535522460937500000000000000000000000L), tolerance);
|
|
}
|
|
|