503 lines
19 KiB
C++
503 lines
19 KiB
C++
// test_nc_t.cpp
|
|
|
|
// Copyright John Maddock 2008, 2012.
|
|
// Copyright Paul A. Bristow 2012.
|
|
|
|
// Use, modification and distribution are subject to the
|
|
// Boost Software License, Version 1.0.
|
|
// (See accompanying file LICENSE_1_0.txt
|
|
// or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
#include <pch.hpp> // Need to include lib/math/test in path.
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning (disable:4127 4512)
|
|
#endif
|
|
|
|
#if !defined(TEST_FLOAT) && !defined(TEST_DOUBLE) && !defined(TEST_LDOUBLE) && !defined(TEST_REAL_CONCEPT)
|
|
# define TEST_FLOAT
|
|
# define TEST_DOUBLE
|
|
# define TEST_LDOUBLE
|
|
# define TEST_REAL_CONCEPT
|
|
#endif
|
|
|
|
#include <boost/math/tools/test.hpp>
|
|
#include <boost/math/concepts/real_concept.hpp> // for real_concept
|
|
#include <boost/math/distributions/non_central_t.hpp> // for chi_squared_distribution.
|
|
#include <boost/math/distributions/normal.hpp> // for normal distribution (for comparison).
|
|
|
|
#define BOOST_TEST_MAIN
|
|
#include <boost/test/unit_test.hpp> // for test_main
|
|
#include <boost/test/results_collector.hpp>
|
|
#include <boost/test/unit_test.hpp>
|
|
#include <boost/test/tools/floating_point_comparison.hpp> // for BOOST_CHECK_CLOSE
|
|
|
|
#include "functor.hpp"
|
|
#include "handle_test_result.hpp"
|
|
#include "table_type.hpp"
|
|
#include "test_nc_t.hpp"
|
|
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
using std::cout;
|
|
using std::endl;
|
|
#include <limits>
|
|
using std::numeric_limits;
|
|
|
|
|
|
void expected_results()
|
|
{
|
|
//
|
|
// Define the max and mean errors expected for
|
|
// various compilers and platforms.
|
|
//
|
|
const char* largest_type;
|
|
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
|
|
if(boost::math::policies::digits<double, boost::math::policies::policy<> >() == boost::math::policies::digits<long double, boost::math::policies::policy<> >())
|
|
{
|
|
largest_type = "(long\\s+)?double|real_concept";
|
|
}
|
|
else
|
|
{
|
|
largest_type = "long double|real_concept";
|
|
}
|
|
#else
|
|
largest_type = "(long\\s+)?double|real_concept";
|
|
#endif
|
|
|
|
//
|
|
// Catch all cases come last:
|
|
//
|
|
if(std::numeric_limits<long double>::digits > 54)
|
|
{
|
|
add_expected_result(
|
|
"[^|]*", // compiler
|
|
"[^|]*", // stdlib
|
|
"[^|]*", // platform
|
|
largest_type, // test type(s)
|
|
"[^|]*large[^|]*", // test data group
|
|
"[^|]*", 2000000, 200000); // test function
|
|
add_expected_result(
|
|
"[^|]*", // compiler
|
|
"[^|]*", // stdlib
|
|
"[^|]*", // platform
|
|
"double", // test type(s)
|
|
"[^|]*large[^|]*", // test data group
|
|
"[^|]*", 500, 100); // test function
|
|
}
|
|
add_expected_result(
|
|
"[^|]*", // compiler
|
|
"[^|]*", // stdlib
|
|
"[^|]*", // platform
|
|
"real_concept", // test type(s)
|
|
"[^|]*", // test data group
|
|
"[^|]*", 300000, 100000); // test function
|
|
add_expected_result(
|
|
"[^|]*", // compiler
|
|
"[^|]*", // stdlib
|
|
"[^|]*", // platform
|
|
largest_type, // test type(s)
|
|
"[^|]*large[^|]*", // test data group
|
|
"[^|]*", 1500, 300); // test function
|
|
add_expected_result(
|
|
"[^|]*", // compiler
|
|
"[^|]*", // stdlib
|
|
"[^|]*", // platform
|
|
largest_type, // test type(s)
|
|
"[^|]*small[^|]*", // test data group
|
|
"[^|]*", 400, 100); // test function
|
|
add_expected_result(
|
|
"[^|]*", // compiler
|
|
"[^|]*", // stdlib
|
|
".*Solaris.*", // platform
|
|
largest_type, // test type(s)
|
|
"[^|]*", // test data group
|
|
"[^|]*", 400, 100); // test function
|
|
add_expected_result(
|
|
"[^|]*", // compiler
|
|
"[^|]*", // stdlib
|
|
"[^|]*", // platform
|
|
largest_type, // test type(s)
|
|
"[^|]*", // test data group
|
|
"[^|]*", 250, 50); // test function
|
|
|
|
//
|
|
// Finish off by printing out the compiler/stdlib/platform names,
|
|
// we do this to make it easier to mark up expected error rates.
|
|
//
|
|
std::cout << "Tests run with " << BOOST_COMPILER << ", "
|
|
<< BOOST_STDLIB << ", " << BOOST_PLATFORM << std::endl;
|
|
}
|
|
|
|
|
|
BOOST_AUTO_TEST_CASE( test_main )
|
|
{
|
|
BOOST_MATH_CONTROL_FP;
|
|
// Basic sanity-check spot values.
|
|
expected_results();
|
|
|
|
// (Parameter value, arbitrarily zero, only communicates the floating point type).
|
|
#ifdef TEST_FLOAT
|
|
test_spots(0.0F); // Test float.
|
|
#endif
|
|
#ifdef TEST_DOUBLE
|
|
test_spots(0.0); // Test double.
|
|
#endif
|
|
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
|
|
#ifdef TEST_LDOUBLE
|
|
test_spots(0.0L); // Test long double.
|
|
#endif
|
|
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
|
|
#ifdef TEST_REAL_CONCEPT
|
|
test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef TEST_FLOAT
|
|
test_accuracy(0.0F, "float"); // Test float.
|
|
test_big_df(0.F); // float
|
|
#endif
|
|
#ifdef TEST_DOUBLE
|
|
test_accuracy(0.0, "double"); // Test double.
|
|
test_big_df(0.); // double
|
|
test_ignore_policy(0.0);
|
|
#endif
|
|
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
|
|
#ifdef TEST_LDOUBLE
|
|
test_accuracy(0.0L, "long double"); // Test long double.
|
|
#endif
|
|
#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS
|
|
#ifdef TEST_REAL_CONCEPT
|
|
test_accuracy(boost::math::concepts::real_concept(0.), "real_concept"); // Test real concept.
|
|
#endif
|
|
#endif
|
|
#endif
|
|
/* */
|
|
|
|
|
|
} // BOOST_AUTO_TEST_CASE( test_main )
|
|
|
|
/*
|
|
|
|
Output:
|
|
|
|
Description: Autorun "J:\Cpp\MathToolkit\test\Math_test\Debug\test_nc_t.exe"
|
|
Running 1 test case...
|
|
Tests run with Microsoft Visual C++ version 10.0, Dinkumware standard library version 520, Win32
|
|
Tolerance = 0.000596046%.
|
|
Tolerance = 5e-010%.
|
|
Tolerance = 5e-010%.
|
|
Tolerance = 1e-008%.
|
|
Testing: Non Central T
|
|
CDF<float> Max = 0 RMS Mean=0
|
|
|
|
CCDF<float> Max = 0 RMS Mean=0
|
|
|
|
|
|
Testing: float quantile sanity check, with tests Non Central T
|
|
Testing: Non Central T (small non-centrality)
|
|
CDF<float> Max = 0 RMS Mean=0
|
|
|
|
CCDF<float> Max = 0 RMS Mean=0
|
|
|
|
|
|
Testing: float quantile sanity check, with tests Non Central T (small non-centrality)
|
|
Testing: Non Central T (large parameters)
|
|
CDF<float> Max = 0 RMS Mean=0
|
|
|
|
CCDF<float> Max = 0 RMS Mean=0
|
|
|
|
|
|
Testing: float quantile sanity check, with tests Non Central T (large parameters)
|
|
Testing: Non Central T
|
|
CDF<double> Max = 137.7 RMS Mean=31.5
|
|
worst case at row: 181
|
|
{ 188.01481628417969, -282.022216796875, -298.02532958984375, 0.1552789395983287, 0.84472106040167128 }
|
|
|
|
CCDF<double> Max = 150.4 RMS Mean=32.32
|
|
worst case at row: 184
|
|
{ 191.43339538574219, 765.73358154296875, 820.14422607421875, 0.89943076553533785, 0.10056923446466212 }
|
|
|
|
|
|
Testing: double quantile sanity check, with tests Non Central T
|
|
Testing: Non Central T (small non-centrality)
|
|
CDF<double> Max = 3.605 RMS Mean=1.031
|
|
worst case at row: 42
|
|
{ 7376104448, 7.3761043495323975e-007, -1.3614851236343384, 0.086680099352107118, 0.91331990064789292 }
|
|
|
|
CCDF<double> Max = 5.207 RMS Mean=1.432
|
|
worst case at row: 38
|
|
{ 1524088576, 1.5240885886669275e-007, 1.3784774541854858, 0.91597201432644526, 0.084027985673554725 }
|
|
|
|
|
|
Testing: double quantile sanity check, with tests Non Central T (small non-centrality)
|
|
Testing: Non Central T (large parameters)
|
|
CDF<double> Max = 286.4 RMS Mean=62.79
|
|
worst case at row: 24
|
|
{ 1.3091821180254421e+019, 1309.18212890625, 1308.01171875, 0.12091797523015677, 0.87908202476984321 }
|
|
|
|
CCDF<double> Max = 226.9 RMS Mean=50.41
|
|
worst case at row: 23
|
|
{ 7.9217674231144776e+018, 792.1767578125, 793.54827880859375, 0.91489369852628, 0.085106301473719961 }
|
|
|
|
|
|
Testing: double quantile sanity check, with tests Non Central T (large parameters)
|
|
Testing: Non Central T
|
|
CDF<long double> Max = 137.7 RMS Mean=31.5
|
|
worst case at row: 181
|
|
{ 188.01481628417969, -282.022216796875, -298.02532958984375, 0.1552789395983287, 0.84472106040167128 }
|
|
|
|
CCDF<long double> Max = 150.4 RMS Mean=32.32
|
|
worst case at row: 184
|
|
{ 191.43339538574219, 765.73358154296875, 820.14422607421875, 0.89943076553533785, 0.10056923446466212 }
|
|
|
|
|
|
Testing: long double quantile sanity check, with tests Non Central T
|
|
Testing: Non Central T (small non-centrality)
|
|
CDF<long double> Max = 3.605 RMS Mean=1.031
|
|
worst case at row: 42
|
|
{ 7376104448, 7.3761043495323975e-007, -1.3614851236343384, 0.086680099352107118, 0.91331990064789292 }
|
|
|
|
CCDF<long double> Max = 5.207 RMS Mean=1.432
|
|
worst case at row: 38
|
|
{ 1524088576, 1.5240885886669275e-007, 1.3784774541854858, 0.91597201432644526, 0.084027985673554725 }
|
|
|
|
|
|
Testing: long double quantile sanity check, with tests Non Central T (small non-centrality)
|
|
Testing: Non Central T (large parameters)
|
|
CDF<long double> Max = 286.4 RMS Mean=62.79
|
|
worst case at row: 24
|
|
{ 1.3091821180254421e+019, 1309.18212890625, 1308.01171875, 0.12091797523015677, 0.87908202476984321 }
|
|
|
|
CCDF<long double> Max = 226.9 RMS Mean=50.41
|
|
worst case at row: 23
|
|
{ 7.9217674231144776e+018, 792.1767578125, 793.54827880859375, 0.91489369852628, 0.085106301473719961 }
|
|
|
|
|
|
Testing: long double quantile sanity check, with tests Non Central T (large parameters)
|
|
Testing: Non Central T
|
|
CDF<real_concept> Max = 2.816e+005 RMS Mean=2.029e+004
|
|
worst case at row: 185
|
|
{ 191.50137329101562, -957.5068359375, -1035.4078369140625, 0.072545502958829097, 0.92745449704117089 }
|
|
|
|
CCDF<real_concept> Max = 1.304e+005 RMS Mean=1.529e+004
|
|
worst case at row: 184
|
|
{ 191.43339538574219, 765.73358154296875, 820.14422607421875, 0.89943076553533785, 0.10056923446466212 }
|
|
|
|
|
|
cdf(n10, 11) = 0.84134471416473389 0.15865525603294373
|
|
cdf(n10, 9) = 0.15865525603294373 0.84134471416473389
|
|
cdf(maxdf10, 11) = 0.84134477376937866 0.15865525603294373
|
|
cdf(infdf10, 11) = 0.84134477376937866 0.15865525603294373
|
|
cdf(n10, 11) = 0.84134474606854293 0.15865525393145707
|
|
cdf(n10, 9) = 0.15865525393145707 0.84134474606854293
|
|
cdf(maxdf10, 11) = 0.84134474606854293 0.15865525393145707
|
|
cdf(infdf10, 11) = 0.84134474606854293 0.15865525393145707
|
|
|
|
*** No errors detected
|
|
|
|
Description: Autorun "J:\Cpp\MathToolkit\test\Math_test\Debug\test_nc_t.exe"
|
|
Running 1 test case...
|
|
Tests run with Microsoft Visual C++ version 10.0, Dinkumware standard library version 520, Win32
|
|
Tolerance = 0.000596046%.
|
|
Tolerance = 5e-010%.
|
|
Tolerance = 5e-010%.
|
|
Tolerance = 1e-008%.
|
|
Testing: Non Central T
|
|
CDF<float> Max = 0 RMS Mean=0
|
|
|
|
CCDF<float> Max = 0 RMS Mean=0
|
|
|
|
|
|
Testing: float quantile sanity check, with tests Non Central T
|
|
Testing: Non Central T (small non-centrality)
|
|
CDF<float> Max = 0 RMS Mean=0
|
|
|
|
CCDF<float> Max = 0 RMS Mean=0
|
|
|
|
|
|
Testing: float quantile sanity check, with tests Non Central T (small non-centrality)
|
|
Testing: Non Central T (large parameters)
|
|
CDF<float> Max = 0 RMS Mean=0
|
|
|
|
CCDF<float> Max = 0 RMS Mean=0
|
|
|
|
|
|
Testing: float quantile sanity check, with tests Non Central T (large parameters)
|
|
Testing: Non Central T
|
|
CDF<double> Max = 137.7 RMS Mean=31.5
|
|
worst case at row: 181
|
|
{ 188.01481628417969, -282.022216796875, -298.02532958984375, 0.1552789395983287, 0.84472106040167128 }
|
|
|
|
CCDF<double> Max = 150.4 RMS Mean=32.32
|
|
worst case at row: 184
|
|
{ 191.43339538574219, 765.73358154296875, 820.14422607421875, 0.89943076553533785, 0.10056923446466212 }
|
|
|
|
|
|
Testing: double quantile sanity check, with tests Non Central T
|
|
Testing: Non Central T (small non-centrality)
|
|
CDF<double> Max = 3.605 RMS Mean=1.031
|
|
worst case at row: 42
|
|
{ 7376104448, 7.3761043495323975e-007, -1.3614851236343384, 0.086680099352107118, 0.91331990064789292 }
|
|
|
|
CCDF<double> Max = 5.207 RMS Mean=1.432
|
|
worst case at row: 38
|
|
{ 1524088576, 1.5240885886669275e-007, 1.3784774541854858, 0.91597201432644526, 0.084027985673554725 }
|
|
|
|
|
|
Testing: double quantile sanity check, with tests Non Central T (small non-centrality)
|
|
Testing: Non Central T (large parameters)
|
|
CDF<double> Max = 286.4 RMS Mean=62.79
|
|
worst case at row: 24
|
|
{ 1.3091821180254421e+019, 1309.18212890625, 1308.01171875, 0.12091797523015677, 0.87908202476984321 }
|
|
|
|
CCDF<double> Max = 226.9 RMS Mean=50.41
|
|
worst case at row: 23
|
|
{ 7.9217674231144776e+018, 792.1767578125, 793.54827880859375, 0.91489369852628, 0.085106301473719961 }
|
|
|
|
|
|
Testing: double quantile sanity check, with tests Non Central T (large parameters)
|
|
Testing: Non Central T
|
|
CDF<long double> Max = 137.7 RMS Mean=31.5
|
|
worst case at row: 181
|
|
{ 188.01481628417969, -282.022216796875, -298.02532958984375, 0.1552789395983287, 0.84472106040167128 }
|
|
|
|
CCDF<long double> Max = 150.4 RMS Mean=32.32
|
|
worst case at row: 184
|
|
{ 191.43339538574219, 765.73358154296875, 820.14422607421875, 0.89943076553533785, 0.10056923446466212 }
|
|
|
|
|
|
Testing: long double quantile sanity check, with tests Non Central T
|
|
Testing: Non Central T (small non-centrality)
|
|
CDF<long double> Max = 3.605 RMS Mean=1.031
|
|
worst case at row: 42
|
|
{ 7376104448, 7.3761043495323975e-007, -1.3614851236343384, 0.086680099352107118, 0.91331990064789292 }
|
|
|
|
CCDF<long double> Max = 5.207 RMS Mean=1.432
|
|
worst case at row: 38
|
|
{ 1524088576, 1.5240885886669275e-007, 1.3784774541854858, 0.91597201432644526, 0.084027985673554725 }
|
|
|
|
|
|
Testing: long double quantile sanity check, with tests Non Central T (small non-centrality)
|
|
Testing: Non Central T (large parameters)
|
|
CDF<long double> Max = 286.4 RMS Mean=62.79
|
|
worst case at row: 24
|
|
{ 1.3091821180254421e+019, 1309.18212890625, 1308.01171875, 0.12091797523015677, 0.87908202476984321 }
|
|
|
|
CCDF<long double> Max = 226.9 RMS Mean=50.41
|
|
worst case at row: 23
|
|
{ 7.9217674231144776e+018, 792.1767578125, 793.54827880859375, 0.91489369852628, 0.085106301473719961 }
|
|
|
|
|
|
Testing: long double quantile sanity check, with tests Non Central T (large parameters)
|
|
Testing: Non Central T
|
|
CDF<real_concept> Max = 2.816e+005 RMS Mean=2.029e+004
|
|
worst case at row: 185
|
|
{ 191.50137329101562, -957.5068359375, -1035.4078369140625, 0.072545502958829097, 0.92745449704117089 }
|
|
|
|
CCDF<real_concept> Max = 1.304e+005 RMS Mean=1.529e+004
|
|
worst case at row: 184
|
|
{ 191.43339538574219, 765.73358154296875, 820.14422607421875, 0.89943076553533785, 0.10056923446466212 }
|
|
|
|
|
|
|
|
*** No errors detected
|
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
Temporary stuff from student's t version.
|
|
|
|
|
|
// Calculate 1 / eps, the point where student's t should change to normal distribution.
|
|
RealType limit = 1 / boost::math::tools::epsilon<RealType>();
|
|
|
|
using namespace boost::math::policies;
|
|
typedef policy<digits10<17> > accurate_policy; // 17 = max_digits10 where available.
|
|
limit = 1 / policies::get_epsilon<RealType, accurate_policy>();
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(limit, static_cast<RealType>(1) / std::numeric_limits<RealType>::epsilon(), tolerance);
|
|
// Default policy to get full accuracy.
|
|
// std::cout << "Switch over to normal if df > " << limit << std::endl;
|
|
// float Switch over to normal if df > 8.38861e+006
|
|
// double Switch over to normal if df > 4.5036e+015
|
|
// Can't test real_concept - doesn't converge.
|
|
|
|
boost::math::normal_distribution<RealType> n01(0, 1); //
|
|
boost::math::normal_distribution<RealType> n10(10, 1); //
|
|
non_central_t_distribution<RealType> nct(boost::math::tools::max_value<RealType>(), 0); // Well over the switchover point,
|
|
non_central_t_distribution<RealType> nct2(limit /5, 0); // Just below the switchover point,
|
|
non_central_t_distribution<RealType> nct3(limit /100, 0); // Well below the switchover point,
|
|
non_central_t_distribution<RealType> nct4(limit, 10); // Well below the switchover point, and 10 non-centrality.
|
|
|
|
// PDF
|
|
BOOST_CHECK_CLOSE_FRACTION(pdf(nct, 0), pdf(n01, 0.), tolerance); // normal and non-central t should be nearly equal.
|
|
BOOST_CHECK_CLOSE_FRACTION(pdf(nct2, 0), pdf(n01, 0.), tolerance); // should be very close to normal.
|
|
BOOST_CHECK_CLOSE_FRACTION(pdf(nct3, 0), pdf(n01, 0.), tolerance * 10); // should be close to normal.
|
|
// BOOST_CHECK_CLOSE_FRACTION(pdf(nct4, 10), pdf(n10, 0.), tolerance * 100); // should be fairly close to normal tolerance.
|
|
|
|
RealType delta = 10; // non-centrality.
|
|
RealType nu = static_cast<RealType>(limit); // df
|
|
boost::math::normal_distribution<RealType> nl(delta, 1); // Normal distribution that nct tends to for big df.
|
|
non_central_t_distribution<RealType> nct5(nu, delta); //
|
|
RealType x = delta;
|
|
// BOOST_CHECK_CLOSE_FRACTION(pdf(nct5, x), pdf(nl, x), tolerance * 10 ); // nu = 1e15
|
|
// BOOST_CHECK_CLOSE_FRACTION(pdf(nct5, x), pdf(nl, x), tolerance * 1000 ); // nu = 1e14
|
|
// BOOST_CHECK_CLOSE_FRACTION(pdf(nct5, x), pdf(nl, x), tolerance * 10000 ); // nu = 1e13
|
|
// BOOST_CHECK_CLOSE_FRACTION(pdf(nct5, x), pdf(nl, x), tolerance * 100000 ); // nu = 1e12
|
|
BOOST_CHECK_CLOSE_FRACTION(pdf(nct5, x), pdf(nl, x), tolerance * 5 ); // nu = 1/eps
|
|
|
|
// Increasing the non-centrality delta increases the difference too because increases asymmetry.
|
|
// For example, with non-centrality = 100, need tolerance * 500
|
|
|
|
// CDF
|
|
BOOST_CHECK_CLOSE_FRACTION(cdf(nct, 0), cdf(n01, 0.), tolerance); // should be exactly equal.
|
|
BOOST_CHECK_CLOSE_FRACTION(cdf(nct2, 0), cdf(n01, 0.), tolerance); // should be very close to normal.
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(cdf(complement(n10, 11)), 1 - cdf(n10, 11), tolerance); //
|
|
// cdf(n10, 10) = 0.841345 0.158655
|
|
BOOST_CHECK_CLOSE_FRACTION(cdf(complement(n10, 9)), 1 - cdf(n10, 9), tolerance); //
|
|
std::cout.precision(17);
|
|
std::cout << "cdf(n10, 11) = " << cdf(n10, 11) << ' ' << cdf(complement(n10, 11)) << endl;
|
|
std::cout << "cdf(n10, 9) = " << cdf(n10, 9) << ' ' << cdf(complement(n10, 9)) << endl;
|
|
|
|
std::cout << std::numeric_limits<double>::max_digits10 << std::endl;
|
|
std::cout.precision(17);
|
|
|
|
using boost::math::tools::max_value;
|
|
|
|
double eps = std::numeric_limits<double>::epsilon();
|
|
// Use policies so that if policy requests lower precision,
|
|
// then get the normal distribution approximation earlier.
|
|
//limit = static_cast<double>(1) / limit; // 1/eps
|
|
double delta = 1e2;
|
|
double df =
|
|
delta / (4 * eps);
|
|
|
|
std::cout << df << std::endl; // df = 1.125899906842624e+018
|
|
|
|
{
|
|
boost::math::non_central_t_distribution<double> dist(df, delta);
|
|
|
|
std::cout <<"mean " << mean(dist) << std::endl; // mean 1000
|
|
std::cout <<"variance " << variance(dist) << std::endl; // variance 1
|
|
std::cout <<"skewness " << skewness(dist) << std::endl; // skewness 8.8817841970012523e-010
|
|
std::cout <<"kurtosis_excess " << kurtosis_excess(dist) << std::endl; // kurtosis_excess 3.0001220703125
|
|
//1.125899906842624e+017
|
|
//mean 100
|
|
//variance 1
|
|
//skewness 8.8817841970012523e-012
|
|
//kurtosis_excess 3
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
*/
|