208 lines
8.0 KiB
C++
208 lines
8.0 KiB
C++
// (C) Copyright John Maddock 2008.
|
|
// Use, modification and distribution are subject to the
|
|
// Boost Software License, Version 1.0. (See accompanying file
|
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
#include <pch.hpp>
|
|
|
|
#include <boost/math/concepts/real_concept.hpp>
|
|
#include <boost/math/tools/test.hpp>
|
|
#define BOOST_TEST_MAIN
|
|
#include <boost/test/unit_test.hpp>
|
|
#include <boost/test/tools/floating_point_comparison.hpp>
|
|
#include <boost/math/special_functions/next.hpp>
|
|
#include <boost/math/special_functions/ulp.hpp>
|
|
#include <boost/multiprecision/cpp_dec_float.hpp>
|
|
#include <boost/multiprecision/debug_adaptor.hpp>
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
|
|
#ifdef BOOST_MSVC
|
|
#pragma warning(disable:4127)
|
|
#endif
|
|
|
|
template <class T>
|
|
bool is_normalized_value(const T& val)
|
|
{
|
|
//
|
|
// Returns false if value has guard digits that are non-zero
|
|
//
|
|
boost::intmax_t shift = std::numeric_limits<T>::digits - ilogb(val) - 1;
|
|
T shifted = scalbn(val, shift);
|
|
return floor(shifted) == shifted;
|
|
}
|
|
|
|
template <class T>
|
|
void test_value(const T& val, const char* name)
|
|
{
|
|
using namespace boost::math;
|
|
T upper = tools::max_value<T>();
|
|
T lower = -upper;
|
|
|
|
std::cout << "Testing type " << name << " with initial value " << val << std::endl;
|
|
|
|
BOOST_CHECK_EQUAL(float_distance(float_next(val), val), -1);
|
|
BOOST_CHECK(float_next(val) > val);
|
|
BOOST_CHECK_EQUAL(float_distance(float_prior(val), val), 1);
|
|
BOOST_CHECK(float_prior(val) < val);
|
|
BOOST_CHECK_EQUAL(float_distance((boost::math::nextafter)(val, upper), val), -1);
|
|
BOOST_CHECK((boost::math::nextafter)(val, upper) > val);
|
|
BOOST_CHECK_EQUAL(float_distance((boost::math::nextafter)(val, lower), val), 1);
|
|
BOOST_CHECK((boost::math::nextafter)(val, lower) < val);
|
|
BOOST_CHECK_EQUAL(float_distance(float_next(float_next(val)), val), -2);
|
|
BOOST_CHECK_EQUAL(float_distance(float_prior(float_prior(val)), val), 2);
|
|
BOOST_CHECK_EQUAL(float_distance(float_prior(float_prior(val)), float_next(float_next(val))), 4);
|
|
BOOST_CHECK_EQUAL(float_distance(float_prior(float_next(val)), val), 0);
|
|
BOOST_CHECK_EQUAL(float_distance(float_next(float_prior(val)), val), 0);
|
|
if (is_normalized_value(val))
|
|
{
|
|
BOOST_CHECK_EQUAL(float_prior(float_next(val)), val);
|
|
BOOST_CHECK_EQUAL(float_next(float_prior(val)), val);
|
|
}
|
|
BOOST_CHECK_EQUAL(float_distance(float_advance(val, 4), val), -4);
|
|
BOOST_CHECK_EQUAL(float_distance(float_advance(val, -4), val), 4);
|
|
if(std::numeric_limits<T>::is_specialized && (std::numeric_limits<T>::has_denorm == std::denorm_present))
|
|
{
|
|
BOOST_CHECK_EQUAL(float_distance(float_advance(float_next(float_next(val)), 4), float_next(float_next(val))), -4);
|
|
BOOST_CHECK_EQUAL(float_distance(float_advance(float_next(float_next(val)), -4), float_next(float_next(val))), 4);
|
|
}
|
|
if (is_normalized_value(val))
|
|
{
|
|
if (val > 0)
|
|
{
|
|
T n = val + ulp(val);
|
|
T fn = float_next(val);
|
|
if (n > fn)
|
|
{
|
|
BOOST_CHECK_LE(ulp(val), boost::math::tools::min_value<T>());
|
|
}
|
|
else
|
|
{
|
|
BOOST_CHECK_EQUAL(fn, n);
|
|
}
|
|
}
|
|
else if (val == 0)
|
|
{
|
|
BOOST_CHECK_GE(boost::math::tools::min_value<T>(), ulp(val));
|
|
}
|
|
else
|
|
{
|
|
T n = val - ulp(val);
|
|
T fp = float_prior(val);
|
|
if (n < fp)
|
|
{
|
|
BOOST_CHECK_LE(ulp(val), boost::math::tools::min_value<T>());
|
|
}
|
|
else
|
|
{
|
|
BOOST_CHECK_EQUAL(fp, n);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
void test_values(const T& val, const char* name)
|
|
{
|
|
static const T a = boost::lexical_cast<T>("1.3456724e22");
|
|
static const T b = boost::lexical_cast<T>("1.3456724e-22");
|
|
static const T z = 0;
|
|
static const T one = 1;
|
|
static const T radix = std::numeric_limits<T>::radix;
|
|
|
|
std::cout << "Testing type " << name << std::endl;
|
|
|
|
T den = (std::numeric_limits<T>::min)() / 4;
|
|
if(den != 0)
|
|
{
|
|
std::cout << "Denormals are active\n";
|
|
}
|
|
else
|
|
{
|
|
std::cout << "Denormals are flushed to zero.\n";
|
|
}
|
|
|
|
test_value(a, name);
|
|
test_value(T(-a), name);
|
|
test_value(b, name);
|
|
test_value(T(-b), name);
|
|
test_value(T(b / 3), name);
|
|
test_value(T(-b / 3), name);
|
|
test_value(boost::math::tools::epsilon<T>(), name);
|
|
test_value(T(-boost::math::tools::epsilon<T>()), name);
|
|
test_value(boost::math::tools::min_value<T>(), name);
|
|
test_value(T(-boost::math::tools::min_value<T>()), name);
|
|
if (std::numeric_limits<T>::is_specialized && (std::numeric_limits<T>::has_denorm == std::denorm_present) && ((std::numeric_limits<T>::min)() / 2 != 0))
|
|
{
|
|
test_value(z, name);
|
|
test_value(T(-z), name);
|
|
}
|
|
test_value(one, name);
|
|
test_value(T(-one), name);
|
|
test_value(radix, name);
|
|
test_value(T(-radix), name);
|
|
|
|
if(std::numeric_limits<T>::is_specialized && (std::numeric_limits<T>::has_denorm == std::denorm_present) && ((std::numeric_limits<T>::min)() / 2 != 0))
|
|
{
|
|
test_value(std::numeric_limits<T>::denorm_min(), name);
|
|
test_value(T(-std::numeric_limits<T>::denorm_min()), name);
|
|
test_value(T(2 * std::numeric_limits<T>::denorm_min()), name);
|
|
test_value(T(-2 * std::numeric_limits<T>::denorm_min()), name);
|
|
}
|
|
|
|
static const int primes[] = {
|
|
11, 13, 17, 19, 23, 29,
|
|
31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
|
|
73, 79, 83, 89, 97, 101, 103, 107, 109, 113,
|
|
127, 131, 137, 139, 149, 151, 157, 163, 167, 173,
|
|
179, 181, 191, 193, 197, 199, 211, 223, 227, 229,
|
|
233, 239, 241, 251, 257, 263, 269, 271, 277, 281,
|
|
283, 293, 307, 311, 313, 317, 331, 337, 347, 349,
|
|
353, 359, 367, 373, 379, 383, 389, 397, 401, 409,
|
|
419, 421, 431, 433, 439, 443, 449, 457, 461, 463,
|
|
};
|
|
|
|
for(unsigned i = 0; i < sizeof(primes)/sizeof(primes[0]); ++i)
|
|
{
|
|
T v1 = val;
|
|
T v2 = val;
|
|
for(int j = 0; j < primes[i]; ++j)
|
|
{
|
|
v1 = boost::math::float_next(v1);
|
|
v2 = boost::math::float_prior(v2);
|
|
}
|
|
BOOST_CHECK_EQUAL(boost::math::float_distance(v1, val), -primes[i]);
|
|
BOOST_CHECK_EQUAL(boost::math::float_distance(v2, val), primes[i]);
|
|
BOOST_CHECK_EQUAL(boost::math::float_advance(val, primes[i]), v1);
|
|
BOOST_CHECK_EQUAL(boost::math::float_advance(val, -primes[i]), v2);
|
|
}
|
|
if(std::numeric_limits<T>::is_specialized && (std::numeric_limits<T>::has_infinity))
|
|
{
|
|
BOOST_CHECK_EQUAL(boost::math::float_prior(std::numeric_limits<T>::infinity()), (std::numeric_limits<T>::max)());
|
|
BOOST_CHECK_EQUAL(boost::math::float_next(-std::numeric_limits<T>::infinity()), -(std::numeric_limits<T>::max)());
|
|
BOOST_MATH_CHECK_THROW(boost::math::float_prior(-std::numeric_limits<T>::infinity()), std::domain_error);
|
|
BOOST_MATH_CHECK_THROW(boost::math::float_next(std::numeric_limits<T>::infinity()), std::domain_error);
|
|
if(boost::math::policies:: BOOST_MATH_OVERFLOW_ERROR_POLICY == boost::math::policies::throw_on_error)
|
|
{
|
|
BOOST_MATH_CHECK_THROW(boost::math::float_prior(-(std::numeric_limits<T>::max)()), std::overflow_error);
|
|
BOOST_MATH_CHECK_THROW(boost::math::float_next((std::numeric_limits<T>::max)()), std::overflow_error);
|
|
}
|
|
else
|
|
{
|
|
BOOST_CHECK_EQUAL(boost::math::float_prior(-(std::numeric_limits<T>::max)()), -std::numeric_limits<T>::infinity());
|
|
BOOST_CHECK_EQUAL(boost::math::float_next((std::numeric_limits<T>::max)()), std::numeric_limits<T>::infinity());
|
|
}
|
|
}
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE( test_main )
|
|
{
|
|
// Very slow, but debuggable:
|
|
//test_values(boost::multiprecision::number<boost::multiprecision::debug_adaptor<boost::multiprecision::cpp_dec_float_50::backend_type> >(0), "cpp_dec_float_50");
|
|
|
|
// Faster, but no good for diagnising the cause of any issues:
|
|
test_values(boost::multiprecision::cpp_dec_float_50(0), "cpp_dec_float_50");
|
|
}
|
|
|
|
|