mpl/doc/tutorial/representing-dimensions.html
2007-11-03 03:25:13 +00:00

157 lines
9.6 KiB
HTML

<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<!-- Copyright Aleksey Gurtovoy 2006. Distributed under the Boost -->
<!-- Software License, Version 1.0. (See accompanying -->
<!-- file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="Docutils 0.3.6: http://docutils.sourceforge.net/" />
<title>THE BOOST MPL LIBRARY: Representing Dimensions</title>
<link rel="stylesheet" href="../style.css" type="text/css" />
</head>
<body class="docframe">
<table class="header"><tr class="header"><td class="header-group navigation-bar"><span class="navigation-group"><a href="./dimensional-analysis.html" class="navigation-link">Prev</a>&nbsp;<a href="./representing-quantities.html" class="navigation-link">Next</a></span><span class="navigation-group-separator">&nbsp;|&nbsp;</span><span class="navigation-group">Back&nbsp;<a href="./representing-quantities.html" class="navigation-link">Along</a></span><span class="navigation-group-separator">&nbsp;|&nbsp;</span><span class="navigation-group"><a href="./dimensional-analysis.html" class="navigation-link">Up</a>&nbsp;<a href="../index.html" class="navigation-link">Home</a></span><span class="navigation-group-separator">&nbsp;|&nbsp;</span><span class="navigation-group"><a href="./tutorial_toc.html" class="navigation-link">Full TOC</a></span></td>
<td class="header-group page-location"><a href="../index.html" class="navigation-link">Front Page</a> / <a href="./tutorial-metafunctions.html" class="navigation-link">Tutorial: Metafunctions and Higher-Order Metaprogramming</a> / <a href="./dimensional-analysis.html" class="navigation-link">Dimensional Analysis</a> / <a href="./representing-dimensions.html" class="navigation-link">Representing Dimensions</a></td>
</tr></table><div class="header-separator"></div>
<div class="section" id="representing-dimensions">
<h1><a class="toc-backref" href="./dimensional-analysis.html#id42" name="representing-dimensions">Representing Dimensions</a></h1>
<p>An international standard called <em>Système
International d'Unites</em> (SI), breaks every quantity down into a
combination of the dimensions <em>mass</em>, <em>length</em> (or <em>position</em>),
<em>time</em>, <em>charge</em>, <em>temperature</em>, <em>intensity</em>, and <em>angle</em>. To be
reasonably general, our system would have to be able to
represent seven or more fundamental dimensions. It also needs
the ability to represent composite dimensions that, like <em>force</em>,
are built through multiplication or division of the fundamental
ones.</p>
<p>In general, a composite dimension is the product of powers of
fundamental dimensions. <a class="footnote-reference" href="#divisor" id="id6" name="id6">[1]</a> If we were going to represent
these powers for manipulation at runtime, we could use an array of
seven <tt class="literal"><span class="pre">int</span></tt>s, with each position in the array holding the power
of a different fundamental dimension:</p>
<pre class="literal-block">
typedef int dimension[7]; // m l t ...
dimension const mass = {1, 0, 0, 0, 0, 0, 0};
dimension const length = {0, 1, 0, 0, 0, 0, 0};
dimension const time = {0, 0, 1, 0, 0, 0, 0};
...
</pre>
<table class="footnote" frame="void" id="divisor" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id6" name="divisor">[1]</a></td><td>Divisors just contribute negative exponents, since
1/<em>x</em> = <em>x</em><sup>-1</sup>.</td></tr>
</tbody>
</table>
<p>In that representation, force would be:</p>
<pre class="literal-block">
dimension const force = {1, 1, -2, 0, 0, 0, 0};
</pre>
<!-- @compile(2) -->
<!-- @litre_translator.line_offset -= 7 -->
<p>that is, <em>mlt</em><sup>-2</sup>. However, if we want to get dimensions into the
type system, these arrays won't do the trick: they're all
the same type! Instead, we need types that <em>themselves</em> represent
sequences of numbers, so that two masses have the same type and a
mass is a different type from a length.</p>
<p>Fortunately, the MPL provides us with a collection of <strong>type
sequences</strong>. For example, we can build a sequence of the built-in
signed integral types this way:</p>
<pre class="literal-block">
#include &lt;boost/mpl/vector.hpp&gt;
typedef boost::mpl::vector&lt;
signed char, short, int, long&gt; signed_types;
</pre>
<p>How can we use a type sequence to represent numbers? Just as
numerical metafunctions pass and return wrapper <em>types</em> having a
nested <tt class="literal"><span class="pre">::value</span></tt>, so numerical sequences are really sequences of
wrapper types (another example of polymorphism). To make this sort
of thing easier, MPL supplies the <tt class="literal"><span class="pre">int_&lt;N&gt;</span></tt> class template, which
presents its integral argument as a nested <tt class="literal"><span class="pre">::value</span></tt>:</p>
<pre class="literal-block">
#include &lt;boost/mpl/int.hpp&gt;
namespace mpl = boost::mpl; // namespace alias
static int const five = mpl::int_&lt;5&gt;::value;
</pre>
<div class="sidebar">
<p class="sidebar-title first">Namespace Aliases</p>
<div class="line-block">
<div class="line"><tt class="literal"><span class="pre">namespace</span></tt> <em>alias</em> <tt class="literal"><span class="pre">=</span></tt> <em>namespace-name</em><tt class="literal"><span class="pre">;</span></tt></div>
</div>
<p>declares <em>alias</em> to be a synonym for <em>namespace-name</em>. Many
examples in this book will use <tt class="literal"><span class="pre">mpl::</span></tt> to indicate
<tt class="literal"><span class="pre">boost::mpl::</span></tt>, but will omit the alias that makes it legal
C++.</p>
</div>
<!-- @ignore() # nonsense isn't worth testing
prefix +=['''
#include <boost/mpl/int.hpp>
#include <boost/mpl/vector.hpp>
'''] -->
<p>In fact, the library contains a whole suite of integral constant
wrappers such as <tt class="literal"><span class="pre">long_</span></tt> and <tt class="literal"><span class="pre">bool_</span></tt>, each one wrapping a
different type of integral constant within a class template.</p>
<p>Now we can build our fundamental dimensions:</p>
<pre class="literal-block">
typedef mpl::vector&lt;
mpl::int_&lt;1&gt;, mpl::int_&lt;0&gt;, mpl::int_&lt;0&gt;, mpl::int_&lt;0&gt;
, mpl::int_&lt;0&gt;, mpl::int_&lt;0&gt;, mpl::int_&lt;0&gt;
&gt; mass;
typedef mpl::vector&lt;
mpl::int_&lt;0&gt;, mpl::int_&lt;1&gt;, mpl::int_&lt;0&gt;, mpl::int_&lt;0&gt;
, mpl::int_&lt;0&gt;, mpl::int_&lt;0&gt;, mpl::int_&lt;0&gt;
&gt; length;
...
</pre>
<!-- @ # We explained about the implicit namespace alias above
prefix.append("""
namespace boost{namespace mpl {}}
namespace mpl = boost::mpl;
""")
compile('all') -->
<p>Whew! That's going to get tiring pretty quickly. Worse, it's hard
to read and verify: The essential information, the powers of each
fundamental dimension, is buried in repetitive syntactic &quot;noise.&quot;
Accordingly, MPL supplies <strong>integral sequence wrappers</strong> that allow
us to write:</p>
<pre class="literal-block">
#include &lt;boost/mpl/vector_c.hpp&gt;
typedef mpl::vector_c&lt;int,1,0,0,0,0,0,0&gt; mass;
typedef mpl::vector_c&lt;int,0,1,0,0,0,0,0&gt; length; // or position
typedef mpl::vector_c&lt;int,0,0,1,0,0,0,0&gt; time;
typedef mpl::vector_c&lt;int,0,0,0,1,0,0,0&gt; charge;
typedef mpl::vector_c&lt;int,0,0,0,0,1,0,0&gt; temperature;
typedef mpl::vector_c&lt;int,0,0,0,0,0,1,0&gt; intensity;
typedef mpl::vector_c&lt;int,0,0,0,0,0,0,1&gt; angle;
</pre>
<p>Even though they have different types, you can think of these
<tt class="literal"><span class="pre">mpl::vector_c</span></tt> specializations as being equivalent to the more
verbose versions above that use <tt class="literal"><span class="pre">mpl::vector</span></tt>.</p>
<p>If we want, we can also define a few composite dimensions:</p>
<pre class="literal-block">
// base dimension: m l t ...
typedef mpl::vector_c&lt;int,0,1,-1,0,0,0,0&gt; velocity; // l/t
typedef mpl::vector_c&lt;int,0,1,-2,0,0,0,0&gt; acceleration; // l/(t<sup>2</sup>)
typedef mpl::vector_c&lt;int,1,1,-1,0,0,0,0&gt; momentum; // ml/t
typedef mpl::vector_c&lt;int,1,1,-2,0,0,0,0&gt; force; // ml/(t<sup>2</sup>)
</pre>
<p>And, incidentally, the dimensions of scalars (like pi) can be
described as:</p>
<pre class="literal-block">
typedef mpl::vector_c&lt;int,0,0,0,0,0,0,0&gt; scalar;
</pre>
<!-- @stack[0].replace('hpp>', 'hpp>\nnamespace {')
stack[0].append('}')
compile('all', pop = None) -->
</div>
<div class="footer-separator"></div>
<table class="footer"><tr class="footer"><td class="header-group navigation-bar"><span class="navigation-group"><a href="./dimensional-analysis.html" class="navigation-link">Prev</a>&nbsp;<a href="./representing-quantities.html" class="navigation-link">Next</a></span><span class="navigation-group-separator">&nbsp;|&nbsp;</span><span class="navigation-group">Back&nbsp;<a href="./representing-quantities.html" class="navigation-link">Along</a></span><span class="navigation-group-separator">&nbsp;|&nbsp;</span><span class="navigation-group"><a href="./dimensional-analysis.html" class="navigation-link">Up</a>&nbsp;<a href="../index.html" class="navigation-link">Home</a></span><span class="navigation-group-separator">&nbsp;|&nbsp;</span><span class="navigation-group"><a href="./tutorial_toc.html" class="navigation-link">Full TOC</a></span></td>
</tr></table></body>
</html>