121 lines
5.7 KiB
C++
121 lines
5.7 KiB
C++
///////////////////////////////////////////////////////////////
|
|
// Copyright 2018 Nick Thompson. Distributed under the Boost
|
|
// Software License, Version 1.0. (See accompanying file
|
|
// LICENSE_1_0.txt or copy at https://www.boost.org/LICENSE_1_0.txt
|
|
|
|
/*`This example demonstrates the usage of the MPC backend for multiprecision complex numbers.
|
|
In the following, we will show how using MPC backend allows for the same operations as the C++ standard library complex numbers.
|
|
*/
|
|
|
|
//[complex128_eg
|
|
#include <iostream>
|
|
#include <complex>
|
|
#include <boost/multiprecision/complex128.hpp>
|
|
|
|
template<class Complex>
|
|
void complex_number_examples()
|
|
{
|
|
Complex z1{0, 1};
|
|
std::cout << std::setprecision(std::numeric_limits<typename Complex::value_type>::digits10);
|
|
std::cout << std::scientific << std::fixed;
|
|
std::cout << "Print a complex number: " << z1 << std::endl;
|
|
std::cout << "Square it : " << z1*z1 << std::endl;
|
|
std::cout << "Real part : " << z1.real() << " = " << real(z1) << std::endl;
|
|
std::cout << "Imaginary part : " << z1.imag() << " = " << imag(z1) << std::endl;
|
|
using std::abs;
|
|
std::cout << "Absolute value : " << abs(z1) << std::endl;
|
|
std::cout << "Argument : " << arg(z1) << std::endl;
|
|
std::cout << "Norm : " << norm(z1) << std::endl;
|
|
std::cout << "Complex conjugate : " << conj(z1) << std::endl;
|
|
std::cout << "Projection onto Riemann sphere: " << proj(z1) << std::endl;
|
|
typename Complex::value_type r = 1;
|
|
typename Complex::value_type theta = 0.8;
|
|
using std::polar;
|
|
std::cout << "Polar coordinates (phase = 0) : " << polar(r) << std::endl;
|
|
std::cout << "Polar coordinates (phase !=0) : " << polar(r, theta) << std::endl;
|
|
|
|
std::cout << "\nElementary special functions:\n";
|
|
using std::exp;
|
|
std::cout << "exp(z1) = " << exp(z1) << std::endl;
|
|
using std::log;
|
|
std::cout << "log(z1) = " << log(z1) << std::endl;
|
|
using std::log10;
|
|
std::cout << "log10(z1) = " << log10(z1) << std::endl;
|
|
using std::pow;
|
|
std::cout << "pow(z1, z1) = " << pow(z1, z1) << std::endl;
|
|
using std::sqrt;
|
|
std::cout << "Take its square root : " << sqrt(z1) << std::endl;
|
|
using std::sin;
|
|
std::cout << "sin(z1) = " << sin(z1) << std::endl;
|
|
using std::cos;
|
|
std::cout << "cos(z1) = " << cos(z1) << std::endl;
|
|
using std::tan;
|
|
std::cout << "tan(z1) = " << tan(z1) << std::endl;
|
|
using std::asin;
|
|
std::cout << "asin(z1) = " << asin(z1) << std::endl;
|
|
using std::acos;
|
|
std::cout << "acos(z1) = " << acos(z1) << std::endl;
|
|
using std::atan;
|
|
std::cout << "atan(z1) = " << atan(z1) << std::endl;
|
|
using std::sinh;
|
|
std::cout << "sinh(z1) = " << sinh(z1) << std::endl;
|
|
using std::cosh;
|
|
std::cout << "cosh(z1) = " << cosh(z1) << std::endl;
|
|
using std::tanh;
|
|
std::cout << "tanh(z1) = " << tanh(z1) << std::endl;
|
|
using std::asinh;
|
|
std::cout << "asinh(z1) = " << asinh(z1) << std::endl;
|
|
using std::acosh;
|
|
std::cout << "acosh(z1) = " << acosh(z1) << std::endl;
|
|
using std::atanh;
|
|
std::cout << "atanh(z1) = " << atanh(z1) << std::endl;
|
|
}
|
|
|
|
int main()
|
|
{
|
|
std::cout << "First, some operations we usually perform with std::complex:\n";
|
|
complex_number_examples<std::complex<double>>();
|
|
std::cout << "\nNow the same operations performed using quad precision complex numbers:\n";
|
|
complex_number_examples<boost::multiprecision::complex128>();
|
|
|
|
return 0;
|
|
}
|
|
//]
|
|
|
|
/*
|
|
|
|
//[complex128_out
|
|
|
|
Print a complex number: (0.000000000000000000000000000000000,1.000000000000000000000000000000000)
|
|
Square it : -1.000000000000000000000000000000000
|
|
Real part : 0.000000000000000000000000000000000 = 0.000000000000000000000000000000000
|
|
Imaginary part : 1.000000000000000000000000000000000 = 1.000000000000000000000000000000000
|
|
Absolute value : 1.000000000000000000000000000000000
|
|
Argument : 1.570796326794896619231321691639751
|
|
Norm : 1.000000000000000000000000000000000
|
|
Complex conjugate : (0.000000000000000000000000000000000,-1.000000000000000000000000000000000)
|
|
Projection onto Riemann sphere: (0.000000000000000000000000000000000,1.000000000000000000000000000000000)
|
|
Polar coordinates (phase = 0) : 1.000000000000000000000000000000000
|
|
Polar coordinates (phase !=0) : (0.696706709347165389063740022772449,0.717356090899522792567167815703377)
|
|
|
|
Elementary special functions:
|
|
exp(z1) = (0.540302305868139717400936607442977,0.841470984807896506652502321630299)
|
|
log(z1) = (0.000000000000000000000000000000000,1.570796326794896619231321691639751)
|
|
log10(z1) = (0.000000000000000000000000000000000,0.682188176920920673742891812715678)
|
|
pow(z1, z1) = 0.207879576350761908546955619834979
|
|
Take its square root : (0.707106781186547524400844362104849,0.707106781186547524400844362104849)
|
|
sin(z1) = (0.000000000000000000000000000000000,1.175201193643801456882381850595601)
|
|
cos(z1) = 1.543080634815243778477905620757061
|
|
tan(z1) = (0.000000000000000000000000000000000,0.761594155955764888119458282604794)
|
|
asin(z1) = (0.000000000000000000000000000000000,0.881373587019543025232609324979792)
|
|
acos(z1) = (1.570796326794896619231321691639751,-0.881373587019543025232609324979792)
|
|
atan(z1) = (0.000000000000000000000000000000000,inf)
|
|
sinh(z1) = (0.000000000000000000000000000000000,0.841470984807896506652502321630299)
|
|
cosh(z1) = 0.540302305868139717400936607442977
|
|
tanh(z1) = (0.000000000000000000000000000000000,1.557407724654902230506974807458360)
|
|
asinh(z1) = (0.000000000000000000000000000000000,1.570796326794896619231321691639751)
|
|
acosh(z1) = (0.881373587019543025232609324979792,1.570796326794896619231321691639751)
|
|
atanh(z1) = (0.000000000000000000000000000000000,0.785398163397448309615660845819876)
|
|
//]
|
|
*/
|