odeint/doc/concepts/symplectic_system.qbk
2014-03-26 08:20:20 +01:00

99 lines
3.3 KiB
Plaintext

[/============================================================================
Boost.odeint
Copyright 2011 Mario Mulansky
Copyright 2011-2012 Karsten Ahnert
Use, modification and distribution is subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)
=============================================================================/]
[section Symplectic System]
[heading Description]
This concept describes how to define a symplectic system written with generalized coordinate `q` and generalized momentum `p`:
[' q'(t) = f(p) ]
[' p'(t) = g(q) ]
Such a situation is typically found for Hamiltonian systems with a separable Hamiltonian:
[' H(p,q) = H[sub kin](p) + V(q) ]
which gives the equations of motion:
[' q'(t) = dH[sub kin] / dp = f(p) ]
[' p'(t) = dV / dq = g(q) ]
The algorithmic implementation of this situation is described by a pair of callable objects for /f/ and /g/ with a specific parameter signature.
Such a system should be implemented as a std::pair of functions or a functors.
Symplectic systems are used in symplectic steppers like `symplectic_rkn_sb3a_mclachlan`.
[heading Notation]
[variablelist
[[`System`] [A type that is a model of SymplecticSystem]]
[[`Coor`] [The type of the coordinate ['q]]]
[[`Momentum`] [The type of the momentum ['p]]]
[[`CoorDeriv`] [The type of the derivative of coordinate ['q']]]
[[`MomentumDeriv`] [The type of the derivative of momentum ['p']]]
[[`sys`] [An object of the type `System`]]
[[`q`] [Object of type Coor]]
[[`p`] [Object of type Momentum]]
[[`dqdt`] [Object of type CoorDeriv]]
[[`dpdt`] [Object of type MomentumDeriv]]
]
[heading Valid expressions]
[table
[[Name] [Expression] [Type] [Semantics]]
[[Check for pair] [`boost::is_pair< System >::type`] [`boost::mpl::true_`] [Check if System is a pair]]
[[Calculate ['dq/dt = f(p)]] [`sys.first( p , dqdt )`] [`void`] [Calculates ['f(p)], the result is stored into `dqdt`] ]
[[Calculate ['dp/dt = g(q)]] [`sys.second( q , dpdt )`] [`void`] [Calculates ['g(q)], the result is stored into `dpdt`] ]
]
[endsect]
[section Simple Symplectic System]
[heading Description]
In most Hamiltonian systems the kinetic term is a quadratic term in the momentum ['H[sub kin] = p^2 / 2m] and in many cases it is possible to rescale coordinates and set /m=1/ which leads to a trivial equation of motion:
[' q'(t) = f(p) = p. ]
while for /p'/ we still have the general form
[' p'(t) = g(q) ]
As this case is very frequent we introduced a concept where only the nontrivial equation for /p'/ has to be provided to the symplectic stepper.
We call this concept ['SimpleSymplecticSystem]
[heading Notation]
[variablelist
[[System] [A type that is a model of SimpleSymplecticSystem]]
[[Coor] [The type of the coordinate ['q]]]
[[MomentumDeriv] [The type of the derivative of momentum ['p']]]
[[sys] [An object that models System]]
[[q] [Object of type Coor]]
[[dpdt] [Object of type MomentumDeriv]]
]
[heading Valid Expressions]
[table
[[Name] [Expression] [Type] [Semantics]]
[[Check for pair] [`boost::is_pair< System >::type`] [`boost::mpl::false_`] [Check if System is a pair, should be evaluated to false in this case.]]
[[Calculate ['dp/dt = g(q)]] [`sys( q , dpdt )`] [`void`] [Calculates ['g(q)], the result is stored into `dpdt`] ]
]
[endsect]