odeint/doc/literature.qbk
2014-03-26 08:20:20 +01:00

54 lines
2.3 KiB
Plaintext

[/============================================================================
Boost.odeint
Copyright 2010-2012 Karsten Ahnert
Copyright 2010-2012 Mario Mulansky
Use, modification and distribution is subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)
=============================================================================/]
[section Literature]
[*General information about numerical integration of ordinary differential equations:]
[#numerical_recipies]
[1] Press William H et al., Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3rd ed. (Cambridge University Press, 2007).
[#hairer_solving_odes_1]
[2] Ernst Hairer, Syvert P. Nørsett, and Gerhard Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd ed. (Springer, Berlin, 2009).
[#hairer_solving_odes_2]
[3] Ernst Hairer and Gerhard Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd ed. (Springer, Berlin, 2010).
[*Symplectic integration of numerical integration:]
[#hairer_geometrical_numeric_integration]
[4] Ernst Hairer, Gerhard Wanner, and Christian Lubich, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd ed. (Springer-Verlag Gmbh, 2006).
[#leimkuhler_reich_simulating_hamiltonian_dynamics]
[5] Leimkuhler Benedict and Reich Sebastian, Simulating Hamiltonian Dynamics (Cambridge University Press, 2005).
[*Special symplectic methods:]
[#symplectic_yoshida_symplectic_integrators]
[6] Haruo Yoshida, “Construction of higher order symplectic integrators,” Physics Letters A 150, no. 5 (November 12, 1990): 262-268.
[#symplectic_mylachlan_symmetric_composition_mehtods]
[7] Robert I. McLachlan, “On the numerical integration of ordinary differential equations by symmetric composition methods,” SIAM J. Sci. Comput. 16, no. 1 (1995): 151-168.
[*Special systems:]
[#fpu_scholarpedia]
[8] [@http://www.scholarpedia.org/article/Fermi-Pasta-Ulam_nonlinear_lattice_oscillations Fermi-Pasta-Ulam nonlinear lattice oscillations]
[#synchronization_pikovsky_rosenblum]
[9] Arkady Pikovsky, Michael Rosemblum, and Jürgen Kurths, Synchronization: A Universal Concept in Nonlinear Sciences. (Cambridge University Press, 2001).
[endsect]