120 lines
3.0 KiB
C++
120 lines
3.0 KiB
C++
/*
|
|
* chaotic_system.cpp
|
|
*
|
|
* This example demonstrates how one can use odeint to determine the Lyapunov
|
|
* exponents of a chaotic system namely the well known Lorenz system. Furthermore,
|
|
* it shows how odeint interacts with boost.range.
|
|
*
|
|
* Copyright 2011-2012 Karsten Ahnert
|
|
* Copyright 2011-2013 Mario Mulansky
|
|
*
|
|
* Distributed under the Boost Software License, Version 1.0.
|
|
* (See accompanying file LICENSE_1_0.txt or
|
|
* copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
*/
|
|
|
|
|
|
#include <iostream>
|
|
#include <boost/array.hpp>
|
|
|
|
#include <boost/numeric/odeint.hpp>
|
|
|
|
#include "gram_schmidt.hpp"
|
|
|
|
using namespace std;
|
|
using namespace boost::numeric::odeint;
|
|
|
|
|
|
const double sigma = 10.0;
|
|
const double R = 28.0;
|
|
const double b = 8.0 / 3.0;
|
|
|
|
//[ system_function_without_perturbations
|
|
struct lorenz
|
|
{
|
|
template< class State , class Deriv >
|
|
void operator()( const State &x_ , Deriv &dxdt_ , double t ) const
|
|
{
|
|
typename boost::range_iterator< const State >::type x = boost::begin( x_ );
|
|
typename boost::range_iterator< Deriv >::type dxdt = boost::begin( dxdt_ );
|
|
|
|
dxdt[0] = sigma * ( x[1] - x[0] );
|
|
dxdt[1] = R * x[0] - x[1] - x[0] * x[2];
|
|
dxdt[2] = -b * x[2] + x[0] * x[1];
|
|
}
|
|
};
|
|
//]
|
|
|
|
|
|
|
|
//[ system_function_with_perturbations
|
|
const size_t n = 3;
|
|
const size_t num_of_lyap = 3;
|
|
const size_t N = n + n*num_of_lyap;
|
|
|
|
typedef boost::array< double , N > state_type;
|
|
typedef boost::array< double , num_of_lyap > lyap_type;
|
|
|
|
void lorenz_with_lyap( const state_type &x , state_type &dxdt , double t )
|
|
{
|
|
lorenz()( x , dxdt , t );
|
|
|
|
for( size_t l=0 ; l<num_of_lyap ; ++l )
|
|
{
|
|
const double *pert = x.begin() + 3 + l * 3;
|
|
double *dpert = dxdt.begin() + 3 + l * 3;
|
|
dpert[0] = - sigma * pert[0] + 10.0 * pert[1];
|
|
dpert[1] = ( R - x[2] ) * pert[0] - pert[1] - x[0] * pert[2];
|
|
dpert[2] = x[1] * pert[0] + x[0] * pert[1] - b * pert[2];
|
|
}
|
|
}
|
|
//]
|
|
|
|
|
|
|
|
|
|
|
|
int main( int argc , char **argv )
|
|
{
|
|
state_type x;
|
|
lyap_type lyap;
|
|
|
|
fill( x.begin() , x.end() , 0.0 );
|
|
x[0] = 10.0 ; x[1] = 10.0 ; x[2] = 5.0;
|
|
|
|
const double dt = 0.01;
|
|
|
|
//[ integrate_transients_with_range
|
|
// explicitly choose range_algebra to override default choice of array_algebra
|
|
runge_kutta4< state_type , double , state_type , double , range_algebra > rk4;
|
|
|
|
// perform 10000 transient steps
|
|
integrate_n_steps( rk4 , lorenz() , std::make_pair( x.begin() , x.begin() + n ) , 0.0 , dt , 10000 );
|
|
//]
|
|
|
|
//[ lyapunov_full_code
|
|
fill( x.begin()+n , x.end() , 0.0 );
|
|
for( size_t i=0 ; i<num_of_lyap ; ++i ) x[n+n*i+i] = 1.0;
|
|
fill( lyap.begin() , lyap.end() , 0.0 );
|
|
|
|
double t = 0.0;
|
|
size_t count = 0;
|
|
while( true )
|
|
{
|
|
|
|
t = integrate_n_steps( rk4 , lorenz_with_lyap , x , t , dt , 100 );
|
|
gram_schmidt< num_of_lyap >( x , lyap , n );
|
|
++count;
|
|
|
|
if( !(count % 100000) )
|
|
{
|
|
cout << t;
|
|
for( size_t i=0 ; i<num_of_lyap ; ++i ) cout << "\t" << lyap[i] / t ;
|
|
cout << endl;
|
|
}
|
|
}
|
|
//]
|
|
|
|
return 0;
|
|
}
|