odeint/examples/molecular_dynamics.cpp
2014-03-26 08:20:33 +01:00

161 lines
4.4 KiB
C++

/*
[auto_generated]
libs/numeric/odeint/examples/molecular_dynamics.cpp
[begin_description]
Molecular dynamics example.
[end_description]
Copyright 2009-2012 Karsten Ahnert
Copyright 2009-2012 Mario Mulansky
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or
copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#include <boost/numeric/odeint.hpp>
#include <vector>
#include <iostream>
#include <random>
using namespace boost::numeric::odeint;
using namespace std;
#define tab "\t"
const size_t n1 = 16;
const size_t n2 = 16;
struct md_system
{
static const size_t n = n1 * n2;
typedef std::vector< double > vector_type;
md_system( double a = 0.0 , // strength of harmonic oscillator
double gamma = 0.0 , // friction
double eps = 0.1 , // interaction strenght
double sigma = 1.0 , // interaction radius
double xmax = 150.0 , double ymax = 150.0 )
: m_a( a ) , m_gamma( gamma )
, m_eps( eps ) , m_sigma( sigma )
, m_xmax( xmax ) , m_ymax( ymax )
{ }
static void init_vector_type( vector_type &x ) { x.resize( 2 * n ); }
void operator()( vector_type const& x , vector_type const& v , vector_type &a , double t ) const
{
for( size_t i=0 ; i<n ; ++i )
{
double diffx = x[i] - 0.5 * m_xmax , diffy = x[i+n] - 0.5 * m_ymax;
double r2 = diffx * diffx + diffy * diffy ;
double r = std::sqrt( r2 );
a[ i ] = - m_a * r * diffx - m_gamma * v[ i ] ;
a[ n + i ] = - m_a * r * diffy - m_gamma * v[ n + i ] ;
}
for( size_t i=0 ; i<n ; ++i )
{
double xi = x[i] , yi = x[n+i];
xi = periodic_bc( xi , m_xmax );
yi = periodic_bc( yi , m_ymax );
for( size_t j=0 ; j<i ; ++j )
{
double xj = x[j] , yj = x[n+j];
xj = periodic_bc( xj , m_xmax );
yj = periodic_bc( yj , m_ymax );
double diffx = ( xj - xi ) , diffy = ( yj - yi );
double r = sqrt( diffx * diffx + diffy * diffy );
double f = lennard_jones( r );
a[ i ] += diffx / r * f;
a[ n + i ] += diffy / r * f;
a[ j ] -= diffx / r * f;
a[ n + j ] -= diffy / r * f;
}
}
}
void bc( vector_type &x )
{
for( size_t i=0 ; i<n ; ++i )
{
x[ i ] = periodic_bc( x[ i ] , m_xmax );
x[ i + n ] = periodic_bc( x[ i + n ] , m_ymax );
}
}
inline double lennard_jones( double r ) const
{
double c = m_sigma / r;
double c3 = c * c * c;
double c6 = c3 * c3;
return 4.0 * m_eps * ( -12.0 * c6 * c6 / r + 6.0 * c6 / r );
}
static inline double periodic_bc( double x , double xmax )
{
return ( x < 0.0 ) ? x + xmax : ( x > xmax ) ? x - xmax : x ;
}
double m_a;
double m_gamma;
double m_eps ;
double m_sigma ;
double m_xmax , m_ymax;
};
int main( int argc , char *argv[] )
{
const size_t n = md_system::n;
typedef md_system::vector_type vector_type;
std::mt19937 rng;
std::normal_distribution<> dist( 0.0 , 1.0 );
vector_type x , v;
md_system::init_vector_type( x );
md_system::init_vector_type( v );
for( size_t i=0 ; i<n1 ; ++i )
{
for( size_t j=0 ; j<n2 ; ++j )
{
x[i*n2+j ] = 5.0 + i * 4.0 ;
x[i*n2+j+n] = 5.0 + j * 4.0 ;
v[i] = dist( rng ) ;
v[i+n] = dist( rng ) ;
}
}
velocity_verlet< vector_type > stepper;
const double dt = 0.025;
double t = 0.0;
md_system sys;
for( size_t oi=0 ; oi<100000 ; ++oi )
{
for( size_t ii=0 ; ii<100 ; ++ii,t+=dt )
stepper.do_step( sys , std::make_pair( std::ref( x ) , std::ref( v ) ) , t , dt );
sys.bc( x );
std::cout << "set size square" << "\n";
std::cout << "unset key" << "\n";
std::cout << "p [0:" << sys.m_xmax << "][0:" << sys.m_ymax << "] '-' pt 7 ps 0.5" << "\n";
for( size_t i=0 ; i<n ; ++i )
std::cout << x[i] << " " << x[i+n] << " " << v[i] << " " << v[i+n] << "\n";
std::cout << "e" << std::endl;
}
return 0;
}