142 lines
3.7 KiB
C++
142 lines
3.7 KiB
C++
/*
|
|
* gauss_packet.cpp
|
|
*
|
|
* Schroedinger equation with potential barrier and periodic boundary conditions
|
|
* Initial Gauss packet moving to the right
|
|
*
|
|
* pipe output into gnuplot to see animation
|
|
*
|
|
* Implementation of Hamilton operator via MTL library
|
|
*
|
|
* Copyright 2011-2013 Mario Mulansky
|
|
* Copyright 2011-2012 Karsten Ahnert
|
|
*
|
|
* Distributed under the Boost Software License, Version 1.0.
|
|
* (See accompanying file LICENSE_1_0.txt or
|
|
* copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
*/
|
|
|
|
|
|
#include <iostream>
|
|
#include <complex>
|
|
|
|
#include <boost/numeric/odeint.hpp>
|
|
#include <boost/numeric/odeint/external/mtl4/mtl4.hpp>
|
|
|
|
#include <boost/numeric/mtl/mtl.hpp>
|
|
|
|
|
|
using namespace std;
|
|
using namespace boost::numeric::odeint;
|
|
|
|
typedef mtl::dense_vector< complex< double > > state_type;
|
|
|
|
struct hamiltonian {
|
|
|
|
typedef mtl::compressed2D< complex< double > > matrix_type;
|
|
matrix_type m_H;
|
|
|
|
hamiltonian( const int N ) : m_H( N , N )
|
|
{
|
|
// constructor with zero potential
|
|
m_H = 0.0;
|
|
initialize_kinetic_term();
|
|
}
|
|
|
|
//template< mtl::compressed2D< double > >
|
|
hamiltonian( mtl::compressed2D< double > &V ) : m_H( num_rows( V ) , num_cols( V ) )
|
|
{
|
|
// use potential V in hamiltonian
|
|
m_H = complex<double>( 0.0 , -1.0 ) * V;
|
|
initialize_kinetic_term();
|
|
}
|
|
|
|
void initialize_kinetic_term( )
|
|
{
|
|
const int N = num_rows( m_H );
|
|
mtl::matrix::inserter< matrix_type , mtl::update_plus< complex<double> > > ins( m_H );
|
|
const double z = 1.0;
|
|
// fill diagonal and upper and lower diagonal
|
|
for( int i = 0 ; i<N ; ++i )
|
|
{
|
|
ins[ i ][ (i+1) % N ] << complex< double >( 0.0 , -z );
|
|
ins[ i ][ i ] << complex< double >( 0.0 , z );
|
|
ins[ (i+1) % N ][ i ] << complex< double >( 0.0 , -z );
|
|
}
|
|
}
|
|
|
|
void operator()( const state_type &psi , state_type &dpsidt , const double t )
|
|
{
|
|
dpsidt = m_H * psi;
|
|
}
|
|
|
|
};
|
|
|
|
struct write_for_gnuplot
|
|
{
|
|
size_t m_every , m_count;
|
|
|
|
write_for_gnuplot( size_t every = 10 )
|
|
: m_every( every ) , m_count( 0 ) { }
|
|
|
|
void operator()( const state_type &x , double t )
|
|
{
|
|
if( ( m_count % m_every ) == 0 )
|
|
{
|
|
//clog << t << endl;
|
|
cout << "p [0:" << mtl::size(x) << "][0:0.02] '-'" << endl;
|
|
for( size_t i=0 ; i<mtl::size(x) ; ++i )
|
|
{
|
|
cout << i << "\t" << norm(x[i]) << "\n";
|
|
}
|
|
cout << "e" << endl;
|
|
}
|
|
|
|
++m_count;
|
|
}
|
|
};
|
|
|
|
static const int N = 1024;
|
|
static const int N0 = 256;
|
|
static const double sigma0 = 20;
|
|
static const double k0 = -1.0;
|
|
|
|
int main( int argc , char** argv )
|
|
{
|
|
state_type x( N , 0.0 );
|
|
|
|
// initialize gauss packet with nonzero velocity
|
|
for( int i=0 ; i<N ; ++i )
|
|
{
|
|
x[i] = exp( -(i-N0)*(i-N0) / ( 4.0*sigma0*sigma0 ) ) * exp( complex< double >( 0.0 , k0*i ) );
|
|
//x[i] += 2.0*exp( -(i+N0-N)*(i+N0-N) / ( 4.0*sigma0*sigma0 ) ) * exp( complex< double >( 0.0 , -k0*i ) );
|
|
}
|
|
x /= mtl::two_norm( x );
|
|
|
|
typedef runge_kutta4< state_type > stepper;
|
|
|
|
// create potential barrier
|
|
mtl::compressed2D< double > V( N , N );
|
|
V = 0.0;
|
|
{
|
|
mtl::matrix::inserter< mtl::compressed2D< double > > ins( V );
|
|
for( int i=0 ; i<N ; ++i )
|
|
{
|
|
//ins[i][i] << 1E-4*(i-N/2)*(i-N/2);
|
|
|
|
if( i < N/2 )
|
|
ins[ i ][ i ] << 0.0 ;
|
|
else
|
|
ins[ i ][ i ] << 1.0 ;
|
|
|
|
}
|
|
}
|
|
|
|
// perform integration, output can be piped to gnuplot
|
|
integrate_const( stepper() , hamiltonian( V ) , x , 0.0 , 1000.0 , 0.1 , write_for_gnuplot( 10 ) );
|
|
|
|
clog << "Norm: " << mtl::two_norm( x ) << endl;
|
|
|
|
return 0;
|
|
}
|