171 lines
4.8 KiB
C++
171 lines
4.8 KiB
C++
//==============================================================================
|
|
// Copyright 2011-2014 Karsten Ahnert
|
|
// Copyright 2011-2014 Mario Mulansky
|
|
// Copyright 2014 LRI UMR 8623 CNRS/Univ Paris Sud XI
|
|
// Copyright 2014 NumScale SAS
|
|
//
|
|
// Distributed under the Boost Software License, Version 1.0.
|
|
// See accompanying file LICENSE.txt or copy at
|
|
// http://www.boost.org/LICENSE_1_0.txt
|
|
//==============================================================================
|
|
|
|
#include <iostream>
|
|
#include <utility>
|
|
|
|
#include <boost/numeric/odeint.hpp>
|
|
|
|
#ifndef M_PI //not there on windows
|
|
#define M_PI 3.141592653589793 //...
|
|
#endif
|
|
|
|
#include <boost/random.hpp>
|
|
#include <boost/dispatch/meta/as_integer.hpp>
|
|
|
|
#include <nt2/include/functions/cos.hpp>
|
|
#include <nt2/include/functions/sin.hpp>
|
|
#include <nt2/include/functions/atan2.hpp>
|
|
#include <nt2/table.hpp>
|
|
#include <nt2/include/functions/zeros.hpp>
|
|
#include <nt2/include/functions/sum.hpp>
|
|
#include <nt2/include/functions/mean.hpp>
|
|
#include <nt2/arithmetic/include/functions/hypot.hpp>
|
|
#include <nt2/include/functions/tie.hpp>
|
|
|
|
#include <boost/numeric/odeint/external/nt2/nt2_algebra_dispatcher.hpp>
|
|
|
|
|
|
using namespace std;
|
|
using namespace boost::numeric::odeint;
|
|
|
|
template <typename container_type, typename T>
|
|
pair< T, T > calc_mean_field( const container_type &x )
|
|
|
|
{
|
|
T cos_sum = 0.0 , sin_sum = 0.0;
|
|
|
|
nt2::tie(cos_sum,sin_sum) = nt2::tie(nt2::mean( nt2::cos(x) ), nt2::mean( nt2::sin(x) ));
|
|
|
|
T K = nt2::hypot(sin_sum,cos_sum);
|
|
T Theta = nt2::atan2( sin_sum , cos_sum );
|
|
|
|
return make_pair( K , Theta );
|
|
}
|
|
|
|
template <typename container_type, typename T>
|
|
struct phase_ensemble
|
|
{
|
|
typedef typename boost::dispatch::meta::as_integer<T,unsigned>::type int_type;
|
|
container_type m_omega;
|
|
T m_epsilon;
|
|
|
|
phase_ensemble( const int_type n , T g = 1.0 , T epsilon = 1.0 )
|
|
: m_epsilon( epsilon )
|
|
{
|
|
m_omega = nt2::zeros(nt2::of_size(n), nt2::meta::as_<T>());
|
|
create_frequencies( g );
|
|
}
|
|
|
|
void create_frequencies( T g )
|
|
{
|
|
boost::mt19937 rng;
|
|
boost::cauchy_distribution<> cauchy( 0.0 , g );
|
|
boost::variate_generator< boost::mt19937&, boost::cauchy_distribution<> > gen( rng , cauchy );
|
|
generate( m_omega.begin() , m_omega.end() , gen );
|
|
}
|
|
|
|
void set_epsilon( T epsilon ) { m_epsilon = epsilon; }
|
|
|
|
T get_epsilon( void ) const { return m_epsilon; }
|
|
|
|
void operator()( const container_type &x , container_type &dxdt , T ) const
|
|
{
|
|
pair< T, T > mean = calc_mean_field<container_type,T>( x );
|
|
dxdt = m_omega + m_epsilon * mean.first * nt2::sin( mean.second - x );
|
|
}
|
|
};
|
|
|
|
template<typename T>
|
|
struct statistics_observer
|
|
{
|
|
typedef typename boost::dispatch::meta::as_integer<T,unsigned>::type int_type;
|
|
T m_K_mean;
|
|
int_type m_count;
|
|
|
|
statistics_observer( void )
|
|
: m_K_mean( 0.0 ) , m_count( 0 ) { }
|
|
|
|
template< class State >
|
|
void operator()( const State &x , T t )
|
|
{
|
|
pair< T, T > mean = calc_mean_field<State,T>( x );
|
|
m_K_mean += mean.first;
|
|
++m_count;
|
|
}
|
|
|
|
T get_K_mean( void ) const { return ( m_count != 0 ) ? m_K_mean / T( m_count ) : 0.0 ; }
|
|
|
|
void reset( void ) { m_K_mean = 0.0; m_count = 0; }
|
|
};
|
|
|
|
template<typename T>
|
|
struct test_ode_table
|
|
{
|
|
typedef nt2::table<T> array_type;
|
|
typedef void experiment_is_immutable;
|
|
|
|
typedef typename boost::dispatch::meta::as_integer<T,unsigned>::type int_type;
|
|
|
|
test_ode_table ( )
|
|
: size_(16384), ensemble( size_ , 1.0 ), unif( 0.0 , 2.0 * M_PI ), gen( rng , unif ), obs()
|
|
{
|
|
x.resize(nt2::of_size(size_));
|
|
}
|
|
|
|
void operator()()
|
|
{
|
|
for( T epsilon = 0.0 ; epsilon < 5.0 ; epsilon += 0.1 )
|
|
{
|
|
ensemble.set_epsilon( epsilon );
|
|
obs.reset();
|
|
|
|
// start with random initial conditions
|
|
generate( x.begin() , x.end() , gen );
|
|
// calculate some transients steps
|
|
integrate_const( runge_kutta4< array_type, T >() , boost::ref( ensemble ) , x , T(0.0) , T(10.0) , dt );
|
|
|
|
// integrate and compute the statistics
|
|
integrate_const( runge_kutta4< array_type, T >() , boost::ref( ensemble ) , x , T(0.0) , T(100.0) , dt , boost::ref( obs ) );
|
|
cout << epsilon << "\t" << obs.get_K_mean() << endl;
|
|
}
|
|
}
|
|
|
|
friend std::ostream& operator<<(std::ostream& os, test_ode_table<T> const& p)
|
|
{
|
|
return os << "(" << p.size() << ")";
|
|
}
|
|
|
|
std::size_t size() const { return size_; }
|
|
|
|
private:
|
|
std::size_t size_;
|
|
phase_ensemble<array_type,T> ensemble;
|
|
boost::uniform_real<> unif;
|
|
array_type x;
|
|
boost::mt19937 rng;
|
|
boost::variate_generator< boost::mt19937&, boost::uniform_real<> > gen;
|
|
statistics_observer<T> obs;
|
|
|
|
static const T dt = 0.1;
|
|
};
|
|
|
|
int main()
|
|
{
|
|
std::cout<< " With T = [double] \n";
|
|
test_ode_table<double> test_double;
|
|
test_double();
|
|
|
|
std::cout<< " With T = [float] \n";
|
|
test_ode_table<float> test_float;
|
|
test_float();
|
|
}
|