126 lines
3.0 KiB
C++
126 lines
3.0 KiB
C++
/*
|
|
* Simulation of an ensemble of Roessler attractors
|
|
*
|
|
* Copyright 2014 Mario Mulansky
|
|
*
|
|
* Distributed under the Boost Software License, Version 1.0.
|
|
* (See accompanying file LICENSE_1_0.txt or
|
|
* copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
*
|
|
*/
|
|
|
|
|
|
#include <iostream>
|
|
#include <vector>
|
|
#include <random>
|
|
|
|
#include <boost/timer.hpp>
|
|
#include <boost/array.hpp>
|
|
|
|
#include <boost/numeric/odeint.hpp>
|
|
|
|
namespace odeint = boost::numeric::odeint;
|
|
|
|
typedef boost::timer timer_type;
|
|
|
|
typedef double fp_type;
|
|
//typedef float fp_type;
|
|
|
|
typedef boost::array<fp_type, 3> state_type;
|
|
typedef std::vector<state_type> state_vec;
|
|
|
|
//---------------------------------------------------------------------------
|
|
struct roessler_system {
|
|
const fp_type m_a, m_b, m_c;
|
|
|
|
roessler_system(const fp_type a, const fp_type b, const fp_type c)
|
|
: m_a(a), m_b(b), m_c(c)
|
|
{}
|
|
|
|
void operator()(const state_type &x, state_type &dxdt, const fp_type t) const
|
|
{
|
|
dxdt[0] = -x[1] - x[2];
|
|
dxdt[1] = x[0] + m_a * x[1];
|
|
dxdt[2] = m_b + x[2] * (x[0] - m_c);
|
|
}
|
|
};
|
|
|
|
//---------------------------------------------------------------------------
|
|
int main(int argc, char *argv[]) {
|
|
if(argc<3)
|
|
{
|
|
std::cerr << "Expected size and steps as parameter" << std::endl;
|
|
exit(1);
|
|
}
|
|
const size_t n = atoi(argv[1]);
|
|
const size_t steps = atoi(argv[2]);
|
|
//const size_t steps = 50;
|
|
|
|
const fp_type dt = 0.01;
|
|
|
|
const fp_type a = 0.2;
|
|
const fp_type b = 1.0;
|
|
const fp_type c = 9.0;
|
|
|
|
// random initial conditions on the device
|
|
std::vector<fp_type> x(n), y(n), z(n);
|
|
std::default_random_engine generator;
|
|
std::uniform_real_distribution<fp_type> distribution_xy(-8.0, 8.0);
|
|
std::uniform_real_distribution<fp_type> distribution_z(0.0, 20.0);
|
|
auto rand_xy = std::bind(distribution_xy, std::ref(generator));
|
|
auto rand_z = std::bind(distribution_z, std::ref(generator));
|
|
std::generate(x.begin(), x.end(), rand_xy);
|
|
std::generate(y.begin(), y.end(), rand_xy);
|
|
std::generate(z.begin(), z.end(), rand_z);
|
|
|
|
state_vec state(n);
|
|
for(size_t i=0; i<n; ++i)
|
|
{
|
|
state[i][0] = x[i];
|
|
state[i][1] = y[i];
|
|
state[i][2] = z[i];
|
|
}
|
|
|
|
std::cout.precision(16);
|
|
|
|
std::cout << "# n: " << n << std::endl;
|
|
|
|
std::cout << x[0] << std::endl;
|
|
|
|
|
|
// Stepper type - use never_resizer for slight performance improvement
|
|
odeint::runge_kutta4_classic<state_type, fp_type, state_type, fp_type,
|
|
odeint::array_algebra,
|
|
odeint::default_operations,
|
|
odeint::never_resizer> stepper;
|
|
|
|
roessler_system sys(a, b, c);
|
|
|
|
timer_type timer;
|
|
|
|
fp_type t = 0.0;
|
|
|
|
for (int step = 0; step < steps; step++)
|
|
{
|
|
for(size_t i=0; i<n; ++i)
|
|
{
|
|
stepper.do_step(sys, state[i], t, dt);
|
|
}
|
|
t += dt;
|
|
}
|
|
|
|
std::cout << "Integration finished, runtime for " << steps << " steps: ";
|
|
std::cout << timer.elapsed() << " s" << std::endl;
|
|
|
|
// compute some accumulation to make sure all results have been computed
|
|
fp_type s = 0.0;
|
|
for(size_t i = 0; i < n; ++i)
|
|
{
|
|
s += state[i][0];
|
|
}
|
|
|
|
std::cout << state[0][0] << std::endl;
|
|
std::cout << s/n << std::endl;
|
|
|
|
}
|