c23fdbeb8f
extrapolation stepper has a configurable order, so we can use it as initializing stepper in the adams-bashforth algorithm. All numeric tests pass.
178 lines
5.2 KiB
C++
178 lines
5.2 KiB
C++
/* Boost numeric test of the runge kutta steppers test file
|
|
|
|
Copyright 2012 Mario Mulansky
|
|
Copyright 2012 Karsten Ahnert
|
|
|
|
Distributed under the Boost Software License, Version 1.0.
|
|
(See accompanying file LICENSE_1_0.txt or
|
|
copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
*/
|
|
|
|
// disable checked iterator warning for msvc
|
|
#include <boost/config.hpp>
|
|
#ifdef BOOST_MSVC
|
|
#pragma warning(disable:4996)
|
|
#endif
|
|
|
|
#define BOOST_TEST_MODULE numeric_runge_kutta
|
|
|
|
#include <iostream>
|
|
#include <cmath>
|
|
|
|
#include <boost/array.hpp>
|
|
|
|
#include <boost/test/unit_test.hpp>
|
|
|
|
#include <boost/mpl/vector.hpp>
|
|
|
|
#include <boost/numeric/odeint.hpp>
|
|
#include <boost/numeric/odeint/stepper/extrapolation_stepper.hpp>
|
|
|
|
using namespace boost::unit_test;
|
|
using namespace boost::numeric::odeint;
|
|
namespace mpl = boost::mpl;
|
|
|
|
typedef double value_type;
|
|
|
|
typedef boost::array< double , 2 > state_type;
|
|
|
|
// harmonic oscillator, analytic solution x[0] = sin( t )
|
|
struct osc
|
|
{
|
|
void operator()( const state_type &x , state_type &dxdt , const double t ) const
|
|
{
|
|
dxdt[0] = x[1];
|
|
dxdt[1] = -x[0];
|
|
}
|
|
};
|
|
|
|
/* reset dispatcher */
|
|
template< class StepperCategory >
|
|
struct resetter
|
|
{
|
|
template< class Stepper >
|
|
static void reset( Stepper &stepper ) { }
|
|
};
|
|
|
|
template< >
|
|
struct resetter< explicit_error_stepper_fsal_tag >
|
|
{
|
|
template< class Stepper >
|
|
static void reset( Stepper &stepper )
|
|
{ stepper.reset(); }
|
|
};
|
|
|
|
|
|
BOOST_AUTO_TEST_SUITE( numeric_runge_kutta_test )
|
|
|
|
|
|
/* generic test for all runge kutta steppers */
|
|
template< class Stepper >
|
|
struct perform_runge_kutta_test
|
|
{
|
|
void operator()( void )
|
|
{
|
|
|
|
Stepper stepper;
|
|
const int o = stepper.order()+1; //order of the error is order of approximation + 1
|
|
|
|
const state_type x0 = {{ 0.0 , 1.0 }};
|
|
state_type x1;
|
|
const double t = 0.0;
|
|
/* do a first step with dt=0.1 to get an estimate on the prefactor of the error dx = f * dt^(order+1) */
|
|
double dt = 0.5;
|
|
stepper.do_step( osc() , x0 , t , x1 , dt );
|
|
const double f = 2.0 * std::abs( sin(dt) - x1[0] ) / std::pow( dt , o ); // upper bound
|
|
|
|
std::cout << o << " , " << f << std::endl;
|
|
|
|
/* as long as we have errors above machine precision */
|
|
while( f*std::pow( dt , o ) > 1E-16 )
|
|
{
|
|
// reset stepper which require resetting (fsal steppers)
|
|
resetter< typename Stepper::stepper_category >::reset( stepper );
|
|
|
|
stepper.do_step( osc() , x0 , t , x1 , dt );
|
|
std::cout << "Testing dt=" << dt << std::endl;
|
|
BOOST_CHECK_LT( std::abs( sin(dt) - x1[0] ) , f*std::pow( dt , o ) );
|
|
dt *= 0.5;
|
|
}
|
|
}
|
|
};
|
|
|
|
|
|
/* generic error test for all runge kutta steppers */
|
|
template< class Stepper >
|
|
struct perform_runge_kutta_error_test
|
|
{
|
|
void operator()( void )
|
|
{
|
|
Stepper stepper;
|
|
const int o = stepper.error_order()+1; //order of the error is order of approximation + 1
|
|
|
|
const state_type x0 = {{ 0.0 , 1.0 }};
|
|
state_type x1 , x_err;
|
|
const double t = 0.0;
|
|
/* do a first step with dt=0.1 to get an estimate on the prefactor of the error dx = f * dt^(order+1) */
|
|
double dt = 0.5;
|
|
stepper.do_step( osc() , x0 , t , x1 , dt , x_err );
|
|
const double f = 2.0 * std::abs( x_err[0] ) / std::pow( dt , o );
|
|
|
|
std::cout << o << " , " << f << " , " << x0[0] << std::endl;
|
|
|
|
/* as long as we have errors above machine precision */
|
|
while( f*std::pow( dt , o ) > 1E-16 )
|
|
{
|
|
// reset stepper which require resetting (fsal steppers)
|
|
resetter< typename Stepper::stepper_category >::reset( stepper );
|
|
|
|
stepper.do_step( osc() , x0 , t , x1 , dt , x_err );
|
|
std::cout << "Testing dt=" << dt << ": " << x_err[1] << std::endl;
|
|
BOOST_CHECK_SMALL( std::abs( x_err[0] ) , f*std::pow( dt , o ) );
|
|
dt *= 0.5;
|
|
}
|
|
}
|
|
};
|
|
|
|
|
|
typedef mpl::vector<
|
|
euler< state_type > ,
|
|
modified_midpoint< state_type > ,
|
|
runge_kutta4< state_type > ,
|
|
runge_kutta4_classic< state_type > ,
|
|
runge_kutta_cash_karp54_classic< state_type > ,
|
|
runge_kutta_cash_karp54< state_type > ,
|
|
runge_kutta_dopri5< state_type > ,
|
|
runge_kutta_fehlberg78< state_type > ,
|
|
extrapolation_stepper< 4, state_type > ,
|
|
extrapolation_stepper< 6, state_type > ,
|
|
extrapolation_stepper< 8, state_type > ,
|
|
extrapolation_stepper< 10, state_type >
|
|
> runge_kutta_steppers;
|
|
|
|
BOOST_AUTO_TEST_CASE_TEMPLATE( runge_kutta_test , Stepper, runge_kutta_steppers )
|
|
{
|
|
perform_runge_kutta_test< Stepper > tester;
|
|
tester();
|
|
}
|
|
|
|
|
|
typedef mpl::vector<
|
|
runge_kutta_cash_karp54_classic< state_type > ,
|
|
runge_kutta_cash_karp54< state_type > ,
|
|
runge_kutta_dopri5< state_type > ,
|
|
runge_kutta_fehlberg78< state_type > ,
|
|
extrapolation_stepper< 4, state_type > ,
|
|
extrapolation_stepper< 6, state_type > ,
|
|
extrapolation_stepper< 8, state_type > ,
|
|
extrapolation_stepper< 10, state_type >
|
|
> runge_kutta_error_steppers;
|
|
|
|
BOOST_AUTO_TEST_CASE_TEMPLATE( runge_kutta_error_test , Stepper, runge_kutta_error_steppers )
|
|
{
|
|
perform_runge_kutta_error_test< Stepper > tester;
|
|
tester();
|
|
}
|
|
|
|
BOOST_AUTO_TEST_SUITE_END()
|