polygon/doc/tutorial/connectivity_database.hpp
Luke Simonson 46e399eb59 initial merge to trunk
[SVN r62301]
2010-05-28 17:17:22 +00:00

150 lines
6.5 KiB
C++

/*
Copyright 2010 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
//connectivity_database.hpp
#ifndef BOOST_POLYGON_TUTORIAL_CONNECTIVITY_DATABASE_HPP
#define BOOST_POLYGON_TUTORIAL_CONNECTIVITY_DATABASE_HPP
#include <boost/polygon/polygon.hpp>
#include <map>
#include <sstream>
#include "layout_database.hpp"
#include "layout_pin.hpp"
typedef std::map<std::string, layout_database > connectivity_database;
//map layout pin data type to boost::polygon::rectangle_concept
namespace boost { namespace polygon{
template <>
struct rectangle_traits<layout_pin> {
typedef int coordinate_type;
typedef interval_data<int> interval_type;
static inline interval_type get(const layout_pin& pin, orientation_2d orient) {
if(orient == HORIZONTAL)
return interval_type(pin.xl, pin.xh);
return interval_type(pin.yl, pin.yh);
}
};
template <>
struct geometry_concept<layout_pin> { typedef rectangle_concept type; };
}}
typedef boost::polygon::polygon_90_data<int> polygon;
typedef boost::polygon::polygon_90_set_data<int> polygon_set;
inline void populate_connected_component
(connectivity_database& connectivity, std::vector<polygon>& polygons,
std::vector<int> polygon_color, std::vector<std::set<int> >& graph,
std::size_t node_id, std::size_t polygon_id_offset, std::string& net,
std::vector<std::string>& net_ids, std::string net_prefix,
std::string& layout_layer) {
if(polygon_color[node_id] == 1)
return;
polygon_color[node_id] = 1;
if(node_id < polygon_id_offset && net_ids[node_id] != net) {
//merge nets in connectivity database
//if one of the nets is internal net merge it into the other
std::string net1 = net_ids[node_id];
std::string net2 = net;
if(net.compare(0, net_prefix.length(), net_prefix) == 0) {
net = net1;
std::swap(net1, net2);
} else {
net_ids[node_id] = net;
}
connectivity_database::iterator itr = connectivity.find(net1);
if(itr != connectivity.end()) {
for(layout_database::iterator itr2 = (*itr).second.begin();
itr2 != (*itr).second.end(); ++itr2) {
connectivity[net2][(*itr2).first].insert((*itr2).second);
}
connectivity.erase(itr);
}
}
if(node_id >= polygon_id_offset)
connectivity[net][layout_layer].insert(polygons[node_id - polygon_id_offset]);
for(std::set<int>::iterator itr = graph[node_id].begin();
itr != graph[node_id].end(); ++itr) {
populate_connected_component(connectivity, polygons, polygon_color, graph,
*itr, polygon_id_offset, net, net_ids, net_prefix, layout_layer);
}
}
inline void connect_layout_to_layer(connectivity_database& connectivity, polygon_set& layout, std::string layout_layer, std::string layer, std::string net_prefix, int& net_suffix) {
if(layout_layer.empty())
return;
boost::polygon::connectivity_extraction_90<int> ce;
std::vector<std::string> net_ids;
for(connectivity_database::iterator itr = connectivity.begin(); itr != connectivity.end(); ++itr) {
net_ids.push_back((*itr).first);
ce.insert((*itr).second[layer]);
}
std::vector<polygon> polygons;
layout.get_polygons(polygons);
std::size_t polygon_id_offset = net_ids.size();
for(std::size_t i = 0; i < polygons.size(); ++i) {
ce.insert(polygons[i]);
}
std::vector<std::set<int> > graph(polygons.size() + net_ids.size(), std::set<int>());
ce.extract(graph);
std::vector<int> polygon_color(polygons.size() + net_ids.size(), 0);
//for each net in net_ids populate connected component with net
for(std::size_t node_id = 0; node_id < net_ids.size(); ++node_id) {
populate_connected_component(connectivity, polygons, polygon_color, graph, node_id,
polygon_id_offset, net_ids[node_id], net_ids,
net_prefix, layout_layer);
}
//for each polygon_color that is zero populate connected compontent with net_prefix + net_suffix++
for(std::size_t i = 0; i < polygons.size(); ++i) {
if(polygon_color[i + polygon_id_offset] == 0) {
std::stringstream ss(std::stringstream::in | std::stringstream::out);
ss << net_prefix << net_suffix++;
std::string internal_net;
ss >> internal_net;
populate_connected_component(connectivity, polygons, polygon_color, graph,
i + polygon_id_offset,
polygon_id_offset, internal_net, net_ids,
net_prefix, layout_layer);
}
}
}
//given a layout_database we populate a connectivity database
inline void populate_connectivity_database(connectivity_database& connectivity, std::vector<layout_pin>& pins, layout_database& layout) {
using namespace boost::polygon;
using namespace boost::polygon::operators;
for(std::size_t i = 0; i < pins.size(); ++i) {
connectivity[pins[i].net][pins[i].layer].insert(pins[i]);
}
int internal_net_suffix = 0;
//connect metal1 layout to pins which were on metal1
connect_layout_to_layer(connectivity, layout["METAL1"], "METAL1",
"METAL1", "__internal_net_", internal_net_suffix);
//connect via0 layout to metal1
connect_layout_to_layer(connectivity, layout["VIA0"], "VIA0",
"METAL1", "__internal_net_", internal_net_suffix);
//poly needs to have gates subtracted from it to prevent shorting through transistors
polygon_set poly_not_gate = layout["POLY"] - layout["GATE"];
//connect poly minus gate to via0
connect_layout_to_layer(connectivity, poly_not_gate, "POLY",
"VIA0", "__internal_net_", internal_net_suffix);
//we don't want to short signals through transistors so we subtract the gate regions
//from the diffusions
polygon_set diff_not_gate = (layout["PDIFF"] + layout["NDIFF"]) - layout["GATE"];
//connect diffusion minus gate to poly
//Note that I made up the DIFF layer name for combined P and NDIFF
connect_layout_to_layer(connectivity, diff_not_gate, "DIFF",
"POLY", "__internal_net_", internal_net_suffix);
//connect gate to poly to make connections through gates on poly
connect_layout_to_layer(connectivity, layout["GATE"], "GATE",
"POLY", "__internal_net_", internal_net_suffix);
//now we have traced connectivity of the layout down to the transistor level
//any polygons not connected to pins have been assigned internal net names
}
#endif