a6718a0c34
Fixing source category in case of segment start / end point.
199 lines
6.2 KiB
C++
199 lines
6.2 KiB
C++
// Boost.Polygon library voronoi_basic_tutorial.cpp file
|
|
|
|
// Copyright Andrii Sydorchuk 2010-2012.
|
|
// Distributed under the Boost Software License, Version 1.0.
|
|
// (See accompanying file LICENSE_1_0.txt or copy at
|
|
// http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
// See http://www.boost.org for updates, documentation, and revision history.
|
|
|
|
#include <cstdio>
|
|
#include <vector>
|
|
|
|
#include <boost/polygon/voronoi.hpp>
|
|
using boost::polygon::voronoi_builder;
|
|
using boost::polygon::voronoi_diagram;
|
|
using boost::polygon::x;
|
|
using boost::polygon::y;
|
|
using boost::polygon::low;
|
|
using boost::polygon::high;
|
|
|
|
#include "voronoi_visual_utils.hpp"
|
|
|
|
struct Point {
|
|
int a;
|
|
int b;
|
|
Point(int x, int y) : a(x), b(y) {}
|
|
};
|
|
|
|
struct Segment {
|
|
Point p0;
|
|
Point p1;
|
|
Segment(int x1, int y1, int x2, int y2) : p0(x1, y1), p1(x2, y2) {}
|
|
};
|
|
|
|
namespace boost {
|
|
namespace polygon {
|
|
|
|
template <>
|
|
struct geometry_concept<Point> {
|
|
typedef point_concept type;
|
|
};
|
|
|
|
template <>
|
|
struct point_traits<Point> {
|
|
typedef int coordinate_type;
|
|
|
|
static inline coordinate_type get(
|
|
const Point& point, orientation_2d orient) {
|
|
return (orient == HORIZONTAL) ? point.a : point.b;
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct geometry_concept<Segment> {
|
|
typedef segment_concept type;
|
|
};
|
|
|
|
template <>
|
|
struct segment_traits<Segment> {
|
|
typedef int coordinate_type;
|
|
typedef Point point_type;
|
|
|
|
static inline point_type get(const Segment& segment, direction_1d dir) {
|
|
return dir.to_int() ? segment.p1 : segment.p0;
|
|
}
|
|
};
|
|
} // polygon
|
|
} // boost
|
|
|
|
// Traversing Voronoi edges using edge iterator.
|
|
int iterate_primary_edges1(const voronoi_diagram<double>& vd) {
|
|
int result = 0;
|
|
for (voronoi_diagram<double>::const_edge_iterator it = vd.edges().begin();
|
|
it != vd.edges().end(); ++it) {
|
|
if (it->is_primary())
|
|
++result;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// Traversing Voronoi edges using cell iterator.
|
|
int iterate_primary_edges2(const voronoi_diagram<double> &vd) {
|
|
int result = 0;
|
|
for (voronoi_diagram<double>::const_cell_iterator it = vd.cells().begin();
|
|
it != vd.cells().end(); ++it) {
|
|
const voronoi_diagram<double>::cell_type& cell = *it;
|
|
const voronoi_diagram<double>::edge_type* edge = cell.incident_edge();
|
|
// This is convenient way to iterate edges around Voronoi cell.
|
|
do {
|
|
if (edge->is_primary())
|
|
++result;
|
|
edge = edge->next();
|
|
} while (edge != cell.incident_edge());
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// Traversing Voronoi edges using vertex iterator.
|
|
// As opposite to the above two functions this one will not iterate through
|
|
// edges without finite endpoints and will iterate only once through edges
|
|
// with single finite endpoint.
|
|
int iterate_primary_edges3(const voronoi_diagram<double> &vd) {
|
|
int result = 0;
|
|
for (voronoi_diagram<double>::const_vertex_iterator it =
|
|
vd.vertices().begin(); it != vd.vertices().end(); ++it) {
|
|
const voronoi_diagram<double>::vertex_type& vertex = *it;
|
|
const voronoi_diagram<double>::edge_type* edge = vertex.incident_edge();
|
|
// This is convenient way to iterate edges around Voronoi vertex.
|
|
do {
|
|
if (edge->is_primary())
|
|
++result;
|
|
edge = edge->rot_next();
|
|
} while (edge != vertex.incident_edge());
|
|
}
|
|
return result;
|
|
}
|
|
|
|
int main() {
|
|
// Preparing Input Geometries.
|
|
std::vector<Point> points;
|
|
points.push_back(Point(0, 0));
|
|
points.push_back(Point(1, 6));
|
|
std::vector<Segment> segments;
|
|
segments.push_back(Segment(-4, 5, 5, -1));
|
|
segments.push_back(Segment(3, -11, 13, -1));
|
|
|
|
// Construction of the Voronoi Diagram.
|
|
voronoi_diagram<double> vd;
|
|
construct_voronoi(points.begin(), points.end(),
|
|
segments.begin(), segments.end(),
|
|
&vd);
|
|
|
|
// Traversing Voronoi Graph.
|
|
{
|
|
printf("Traversing Voronoi graph.\n");
|
|
printf("Number of visited primary edges using edge iterator: %d\n",
|
|
iterate_primary_edges1(vd));
|
|
printf("Number of visited primary edges using cell iterator: %d\n",
|
|
iterate_primary_edges2(vd));
|
|
printf("Number of visited primary edges using vertex iterator: %d\n",
|
|
iterate_primary_edges3(vd));
|
|
printf("\n");
|
|
}
|
|
|
|
// Using color member of the Voronoi primitives to store the average number
|
|
// of edges around each cell (including secondary edges).
|
|
{
|
|
printf("Number of edges (including secondary) around the Voronoi cells:\n");
|
|
for (voronoi_diagram<double>::const_edge_iterator it = vd.edges().begin();
|
|
it != vd.edges().end(); ++it) {
|
|
std::size_t cnt = it->cell()->color();
|
|
it->cell()->color(cnt + 1);
|
|
}
|
|
for (voronoi_diagram<double>::const_cell_iterator it = vd.cells().begin();
|
|
it != vd.cells().end(); ++it) {
|
|
printf("%lu ", it->color());
|
|
}
|
|
printf("\n");
|
|
printf("\n");
|
|
}
|
|
|
|
// Linking Voronoi cells with input geometries.
|
|
{
|
|
unsigned int cell_index = 0;
|
|
for (voronoi_diagram<double>::const_cell_iterator it = vd.cells().begin();
|
|
it != vd.cells().end(); ++it) {
|
|
if (it->contains_point()) {
|
|
if (it->source_category() ==
|
|
boost::polygon::SOURCE_CATEGORY_SINGLE_POINT) {
|
|
std::size_t index = it->source_index();
|
|
Point p = points[index];
|
|
printf("Cell #%u contains a point: (%d, %d).\n",
|
|
cell_index, x(p), y(p));
|
|
} else if (it->source_category() ==
|
|
boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) {
|
|
std::size_t index = it->source_index() - points.size();
|
|
Point p0 = low(segments[index]);
|
|
printf("Cell #%u contains segment start point: (%d, %d).\n",
|
|
cell_index, x(p0), y(p0));
|
|
} else if (it->source_category() ==
|
|
boost::polygon::SOURCE_CATEGORY_SEGMENT_END_POINT) {
|
|
std::size_t index = it->source_index() - points.size();
|
|
Point p1 = high(segments[index]);
|
|
printf("Cell #%u contains segment end point: (%d, %d).\n",
|
|
cell_index, x(p1), y(p1));
|
|
}
|
|
} else {
|
|
std::size_t index = it->source_index() - points.size();
|
|
Point p0 = low(segments[index]);
|
|
Point p1 = high(segments[index]);
|
|
printf("Cell #%u contains a segment: ((%d, %d), (%d, %d)). \n",
|
|
cell_index, x(p0), y(p0), x(p1), y(p1));
|
|
}
|
|
++cell_index;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|