polygon/example/voronoi_visual_utils.hpp
2012-09-07 22:20:10 +00:00

187 lines
6.7 KiB
C++

// Boost.Polygon library voronoi_graphic_utils.hpp header file
// Copyright Andrii Sydorchuk 2010-2012.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org for updates, documentation, and revision history.
#ifndef BOOST_POLYGON_VORONOI_VISUAL_UTILS
#define BOOST_POLYGON_VORONOI_VISUAL_UTILS
#include <stack>
#include <vector>
#include <boost/polygon/isotropy.hpp>
#include <boost/polygon/point_concept.hpp>
#include <boost/polygon/segment_concept.hpp>
#include <boost/polygon/rectangle_concept.hpp>
namespace boost {
namespace polygon {
// Utilities class, that contains set of routines handful for visualization.
template <typename CT>
class voronoi_visual_utils {
public:
// Discretize parabolic Voronoi edge.
// Parabolic Voronoi edges are always formed by one point and one segment
// from the initial input set.
//
// Args:
// point: input point.
// segment: input segment.
// max_dist: maximum discretization distance.
// discretization: point discretization of the given Voronoi edge.
//
// Template arguments:
// InCT: coordinate type of the input geometries (usually integer).
// Point: point type, should model point concept.
// Segment: segment type, should model segment concept.
//
// Important:
// discretization should contain both edge endpoints initially.
template <class InCT1, class InCT2,
template<class> class Point,
template<class> class Segment>
static
typename enable_if<
typename gtl_and<
typename gtl_if<
typename is_point_concept<
typename geometry_concept< Point<InCT1> >::type
>::type
>::type,
typename gtl_if<
typename is_segment_concept<
typename geometry_concept< Segment<InCT2> >::type
>::type
>::type
>::type,
void
>::type discretize(
const Point<InCT1>& point,
const Segment<InCT2>& segment,
const CT max_dist,
std::vector< Point<CT> >* discretization) {
// Apply the linear transformation to move start point of the segment to
// the point with coordinates (0, 0) and the direction of the segment to
// coincide the positive direction of the x-axis.
CT segm_vec_x = cast(x(high(segment))) - cast(x(low(segment)));
CT segm_vec_y = cast(y(high(segment))) - cast(y(low(segment)));
CT sqr_segment_length = segm_vec_x * segm_vec_x + segm_vec_y * segm_vec_y;
// Compute x-coordinates of the endpoints of the edge
// in the transformed space.
CT projection_start = sqr_segment_length *
get_point_projection((*discretization)[0], segment);
CT projection_end = sqr_segment_length *
get_point_projection((*discretization)[1], segment);
// Compute parabola parameters in the transformed space.
// Parabola has next representation:
// f(x) = ((x-rot_x)^2 + rot_y^2) / (2.0*rot_y).
CT point_vec_x = cast(x(point)) - cast(x(low(segment)));
CT point_vec_y = cast(y(point)) - cast(y(low(segment)));
CT rot_x = segm_vec_x * point_vec_x + segm_vec_y * point_vec_y;
CT rot_y = segm_vec_x * point_vec_y - segm_vec_y * point_vec_x;
// Save the last point.
Point<CT> last_point = (*discretization)[1];
discretization->pop_back();
// Use stack to avoid recursion.
std::stack<CT> point_stack;
point_stack.push(projection_end);
CT cur_x = projection_start;
CT cur_y = parabola_y(cur_x, rot_x, rot_y);
// Adjust max_dist parameter in the transformed space.
const CT max_dist_transformed = max_dist * max_dist * sqr_segment_length;
while (!point_stack.empty()) {
CT new_x = point_stack.top();
CT new_y = parabola_y(new_x, rot_x, rot_y);
// Compute coordinates of the point of the parabola that is
// furthest from the current line segment.
CT mid_x = (new_y - cur_y) / (new_x - cur_x) * rot_y + rot_x;
CT mid_y = parabola_y(mid_x, rot_x, rot_y);
// Compute maximum distance between the given parabolic arc
// and line segment that discretize it.
CT dist = (new_y - cur_y) * (mid_x - cur_x) -
(new_x - cur_x) * (mid_y - cur_y);
dist = dist * dist / ((new_y - cur_y) * (new_y - cur_y) +
(new_x - cur_x) * (new_x - cur_x));
if (dist <= max_dist_transformed) {
// Distance between parabola and line segment is less than max_dist.
point_stack.pop();
CT inter_x = (segm_vec_x * new_x - segm_vec_y * new_y) /
sqr_segment_length + cast(x(low(segment)));
CT inter_y = (segm_vec_x * new_y + segm_vec_y * new_x) /
sqr_segment_length + cast(y(low(segment)));
discretization->push_back(Point<CT>(inter_x, inter_y));
cur_x = new_x;
cur_y = new_y;
} else {
point_stack.push(mid_x);
}
}
// Update last point.
discretization->back() = last_point;
}
private:
// Compute y(x) = ((x - a) * (x - a) + b * b) / (2 * b).
static CT parabola_y(CT x, CT a, CT b) {
return ((x - a) * (x - a) + b * b) / (b + b);
}
// Get normalized length of the distance between:
// 1) point projection onto the segment
// 2) start point of the segment
// Return this length divided by the segment length. This is made to avoid
// sqrt computation during transformation from the initial space to the
// transformed one and vice versa. The assumption is made that projection of
// the point lies between the start-point and endpoint of the segment.
template <class InCT,
template<class> class Point,
template<class> class Segment>
static
typename enable_if<
typename gtl_and<
typename gtl_if<
typename is_point_concept<
typename geometry_concept< Point<int> >::type
>::type
>::type,
typename gtl_if<
typename is_segment_concept<
typename geometry_concept< Segment<long> >::type
>::type
>::type
>::type,
CT
>::type get_point_projection(
const Point<CT>& point, const Segment<InCT>& segment) {
CT segment_vec_x = cast(x(high(segment))) - cast(x(low(segment)));
CT segment_vec_y = cast(y(high(segment))) - cast(y(low(segment)));
CT point_vec_x = x(point) - cast(x(low(segment)));
CT point_vec_y = y(point) - cast(y(low(segment)));
CT sqr_segment_length =
segment_vec_x * segment_vec_x + segment_vec_y * segment_vec_y;
CT vec_dot = segment_vec_x * point_vec_x + segment_vec_y * point_vec_y;
return vec_dot / sqr_segment_length;
}
template <typename InCT>
static CT cast(const InCT& value) {
return static_cast<CT>(value);
}
};
}
}
#endif // BOOST_POLYGON_VORONOI_VISUAL_UTILS