d18009e308
[SVN r25052]
92 lines
3.0 KiB
C
92 lines
3.0 KiB
C
# /* Copyright (C) 2002
|
|
# * Housemarque Oy
|
|
# * http://www.housemarque.com
|
|
# *
|
|
# * Distributed under the Boost Software License, Version 1.0. (See
|
|
# * accompanying file LICENSE_1_0.txt or copy at
|
|
# * http://www.boost.org/LICENSE_1_0.txt)
|
|
# */
|
|
#
|
|
# /* Revised by Paul Mensonides (2002) */
|
|
#
|
|
# /* See http://www.boost.org for most recent version. */
|
|
#
|
|
# /* This example shows how BOOST_PP_WHILE() can be used for implementing macros. */
|
|
#
|
|
# include <stdio.h>
|
|
#
|
|
# include <boost/preprocessor/arithmetic/add.hpp>
|
|
# include <boost/preprocessor/arithmetic/sub.hpp>
|
|
# include <boost/preprocessor/comparison/less_equal.hpp>
|
|
# include <boost/preprocessor/control/while.hpp>
|
|
# include <boost/preprocessor/list/adt.hpp>
|
|
# include <boost/preprocessor/tuple/elem.hpp>
|
|
#
|
|
# /* First consider the following C implementation of Fibonacci. */
|
|
|
|
typedef struct linear_fib_state {
|
|
int a0, a1, n;
|
|
} linear_fib_state;
|
|
|
|
static int linear_fib_c(linear_fib_state p) {
|
|
return p.n;
|
|
}
|
|
|
|
static linear_fib_state linear_fib_f(linear_fib_state p) {
|
|
linear_fib_state r = { p.a1, p.a0 + p.a1, p.n - 1 };
|
|
return r;
|
|
}
|
|
|
|
static int linear_fib(int n) {
|
|
linear_fib_state p = { 0, 1, n };
|
|
while (linear_fib_c(p)) {
|
|
p = linear_fib_f(p);
|
|
}
|
|
return p.a0;
|
|
}
|
|
|
|
# /* Then consider the following preprocessor implementation of Fibonacci. */
|
|
#
|
|
# define LINEAR_FIB(n) LINEAR_FIB_D(1, n)
|
|
# /* Since the macro is implemented using BOOST_PP_WHILE, the actual
|
|
# * implementation takes a depth as a parameters so that it can be called
|
|
# * inside a BOOST_PP_WHILE. The above easy-to-use version simply uses 1
|
|
# * as the depth and cannot be called inside a BOOST_PP_WHILE.
|
|
# */
|
|
#
|
|
# define LINEAR_FIB_D(d, n) \
|
|
BOOST_PP_TUPLE_ELEM(3, 0, BOOST_PP_WHILE_ ## d(LINEAR_FIB_C, LINEAR_FIB_F, (0, 1, n)))
|
|
# /* ^^^^ ^^^^^ ^^ ^^ ^^^^^^^
|
|
# * #1 #2 #3 #3 #4
|
|
# *
|
|
# * 1) The state is a 3-element tuple. After the iteration is finished, the first
|
|
# * element of the tuple is the result.
|
|
# *
|
|
# * 2) The WHILE primitive is "invoked" directly. BOOST_PP_WHILE(D, ...)
|
|
# * can't be used because it would not be expanded by the preprocessor.
|
|
# *
|
|
# * 3) ???_C is the condition and ???_F is the iteration macro.
|
|
# */
|
|
#
|
|
# define LINEAR_FIB_C(d, p) \
|
|
/* p.n */ BOOST_PP_TUPLE_ELEM(3, 2, p) \
|
|
/**/
|
|
#
|
|
# define LINEAR_FIB_F(d, p) \
|
|
( \
|
|
/* p.a1 */ BOOST_PP_TUPLE_ELEM(3, 1, p), \
|
|
/* p.a0 + p.a1 */ BOOST_PP_ADD_D(d, BOOST_PP_TUPLE_ELEM(3, 0, p), BOOST_PP_TUPLE_ELEM(3, 1, p)), \
|
|
/* ^^ ^ \
|
|
* BOOST_PP_ADD() uses BOOST_PP_WHILE(). Therefore we \
|
|
* pass the recursion depth explicitly to BOOST_PP_ADD_D(). \
|
|
*/ \
|
|
/* p.n - 1 */ BOOST_PP_DEC(BOOST_PP_TUPLE_ELEM(3, 2, p)) \
|
|
) \
|
|
/**/
|
|
|
|
int main() {
|
|
printf("linear_fib(10) = %d\n", linear_fib(10));
|
|
printf("LINEAR_FIB(10) = %d\n", LINEAR_FIB(10));
|
|
return 0;
|
|
}
|