Fix formatting issues in the Reference Manual.

This commit is contained in:
Stefan Seefeld 2011-10-29 20:39:37 +00:00
parent beaa4b0e4d
commit 2a8823f745
5 changed files with 254 additions and 235 deletions

View File

@ -13,24 +13,29 @@ synopsis
::
namespace boost
{
namespace numpy
{
namespace boost
{
namespace numpy
{
template <typename TBinaryFunctor,typename TArgument1=typename TBinaryFunctor::first_argument_type,typename TArgument2=typename
TBinaryFunctor::second_argument_type,typename TResult=typename TBinaryFunctor::result_type>
template <typename TBinaryFunctor,
typename TArgument1=typename TBinaryFunctor::first_argument_type,
typename TArgument2=typename TBinaryFunctor::second_argument_type,
typename TResult=typename TBinaryFunctor::result_type>
struct binary_ufunc
{
struct binary_ufunc
{
static python::object call(TBinaryFunctor & self, python::object const & input1, python::object const & input2,python::object const & output)
static python::object call(TBinaryFunctor & self,
python::object const & input1,
python::object const & input2,
python::object const & output);
static python::object make();
static python::object make();
};
}
}
}
}
}
constructors
@ -38,12 +43,12 @@ constructors
::
struct example_binary_ufunc
{
typedef any_valid first_argument_type;
typedef any_valid second_argument_type;
typedef any_valid result_type;
};
struct example_binary_ufunc
{
typedef any_valid first_argument_type;
typedef any_valid second_argument_type;
typedef any_valid result_type;
};
:Requirements: The ``any_valid`` type must be defined using typedef as a valid C++ type in order to use the struct methods correctly
@ -54,9 +59,13 @@ accessors
::
template <typename TBinaryFunctor,typename TArgument1=typename TBinaryFunctor::first_argument_type,typename TArgument2=typename
TBinaryFunctor::second_argument_type,typename TResult=typename TBinaryFunctor::result_type>
static python::object call(TBinaryFunctor & self, python::object const & input, python::object const & output) ;
template <typename TBinaryFunctor,
typename TArgument1=typename TBinaryFunctor::first_argument_type,
typename TArgument2=typename TBinaryFunctor::second_argument_type,
typename TResult=typename TBinaryFunctor::result_type>
static python::object call(TBinaryFunctor & self,
python::object const & input,
python::object const & output);
:Requires: Typenames ``TBinaryFunctor`` and optionally ``TArgument1`` and ``TArgument2`` for argument type and ``TResult`` for result type
@ -64,32 +73,32 @@ accessors
::
template <typename TBinaryFunctor,typename TArgument1=typename TBinaryFunctor::first_argument_type,typename TArgument2=typename,
TBinaryFunctor::second_argument_type,typename TResult=typename TBinaryFunctor::result_type>
static python::object make();
template <typename TBinaryFunctor,
typename TArgument1=typename TBinaryFunctor::first_argument_type,
typename TArgument2=typename TBinaryFunctor::second_argument_type,
typename TResult=typename TBinaryFunctor::result_type>
static python::object make();
:Requires: Typenames ``TBinaryFunctor`` and optionally ``TArgument1`` and ``TArgument2`` for argument type and ``TResult`` for result type
:Returns: A Python function object to call the overloaded () operator in the struct (in typical usage)
Example(s)
----------
::
struct BinarySquare
{
typedef double first_argument_type;
typedef double second_argument_type;
typedef double result_type;
struct BinarySquare
{
typedef double first_argument_type;
typedef double second_argument_type;
typedef double result_type;
double operator()(double a,double b) const { return (a*a + b*b) ; }
};
double operator()(double a,double b) const { return (a*a + b*b) ; }
};
p::object ud = p::class_<BinarySquare, boost::shared_ptr<BinarySquare> >("BinarySquare").def("__call__", np::binary_ufunc<BinarySquare>::make());
p::object inst = ud();
result_array = inst.attr("__call__")(demo_array,demo_array) ;
std::cout << "Square of list with binary ufunc is " << p::extract <char const * > (p::str(result_array)) << std::endl ;
p::object ud = p::class_<BinarySquare, boost::shared_ptr<BinarySquare> >("BinarySquare").def("__call__", np::binary_ufunc<BinarySquare>::make());
p::object inst = ud();
result_array = inst.attr("__call__")(demo_array,demo_array) ;
std::cout << "Square of list with binary ufunc is " << p::extract <char const * > (p::str(result_array)) << std::endl ;

View File

@ -15,38 +15,39 @@ synopsis
::
namespace boost
{
namespace numpy
{
namespace boost
{
namespace numpy
{
class dtype : public python::object
{
static python::detail::new_reference convert(python::object::object_cref arg, bool align);
public:
class dtype : public python::object
{
static python::detail::new_reference convert(python::object::object_cref arg, bool align);
public:
// Convert an arbitrary Python object to a data-type descriptor object.
template <typename T>
explicit dtype(T arg, bool align=false);
// Convert an arbitrary Python object to a data-type descriptor object.
template <typename T>
explicit dtype(T arg, bool align=false);
// Get the built-in numpy dtype associated with the given scalar template type.
template <typename T> static dtype get_builtin();
// Get the built-in numpy dtype associated with the given scalar template type.
template <typename T> static dtype get_builtin();
// Return the size of the data type in bytes.
int get_itemsize() const;
};
// Return the size of the data type in bytes.
int get_itemsize() const;
};
}
}
constructors
------------
::
template <typename T>
explicit dtype(T arg, bool align=false)
template <typename T>
explicit dtype(T arg, bool align=false)
:Requirements: ``T`` must be either :
:Requirements: The typename supplied, ``T`` must be either :
* a built-in C++ typename convertible to object
* a valid python object or convertible to object
@ -57,7 +58,7 @@ constructors
::
template <typename T> static dtype get_builtin();
template <typename T> static dtype get_builtin();
:Requirements: The typename supplied, ``T`` must be a builtin C++ type also supported by numpy
@ -68,7 +69,7 @@ accessors
::
int get_itemsize() const;
int get_itemsize() const;
:Returns: the size of the data type in bytes.
@ -78,10 +79,8 @@ Example(s)
::
namespace np = boost::numpy ;
np::dtype dtype = np::dtype::get_builtin<double>();
p::tuple for_custom_dtype = p::make_tuple("ha",dtype) ;
np::dtype custom_dtype = np::dtype(list_for_dtype) ;
namespace np = boost::numpy;
np::dtype dtype = np::dtype::get_builtin<double>();
p::tuple for_custom_dtype = p::make_tuple("ha",dtype);
np::dtype custom_dtype = np::dtype(list_for_dtype);

View File

@ -13,32 +13,29 @@ synopsis
::
namespace boost
{
namespace numpy
{
namespace boost
{
namespace numpy
{
class multi_iter : public python::object
{
public:
void next();
bool not_done() const;
char * get_data(int n) const;
int const get_nd() const;
Py_intptr_t const * get_shape() const;
Py_intptr_t const shape(int n) const;
};
class multi_iter : public python::object
{
public:
void next();
bool not_done() const;
char * get_data(int n) const;
int const get_nd() const;
Py_intptr_t const * get_shape() const;
Py_intptr_t const shape(int n) const;
};
multi_iter make_multi_iter(python::object const & a1);
multi_iter make_multi_iter(python::object const & a1);
multi_iter make_multi_iter(python::object const & a1, python::object const & a2);
multi_iter make_multi_iter(python::object const & a1, python::object const & a2, python::object const & a3);
multi_iter make_multi_iter(python::object const & a1, python::object const & a2);
multi_iter make_multi_iter(python::object const & a1, python::object const & a2, python::object const & a3);
}
} // namespace boost::numpy
}
}
constructors
@ -46,11 +43,9 @@ constructors
::
multi_iter make_multi_iter(python::object const & a1);
multi_iter make_multi_iter(python::object const & a1, python::object const & a2);
multi_iter make_multi_iter(python::object const & a1, python::object const & a2, python::object const & a3);
multi_iter make_multi_iter(python::object const & a1);
multi_iter make_multi_iter(python::object const & a1, python::object const & a2);
multi_iter make_multi_iter(python::object const & a1, python::object const & a2, python::object const & a3);
:Returns: A Python iterator object broadcasting over one, two or three sequences as supplied
@ -59,37 +54,37 @@ accessors
::
void next();
void next();
:Effects: Increments the iterator
::
bool not_done() const;
bool not_done() const;
:Returns: boolean value indicating whether the iterator is at its end
::
char * get_data(int n) const;
char * get_data(int n) const;
:Returns: a pointer to the element of the nth broadcasted array.
::
int const get_nd() const;
int const get_nd() const;
:Returns: the number of dimensions of the broadcasted array expression
::
Py_intptr_t const * get_shape() const;
Py_intptr_t const * get_shape() const;
:Returns: the shape of the broadcasted array expression as an array of integers.
::
Py_intptr_t const shape(int n) const;
Py_intptr_t const shape(int n) const;
:Returns: the shape of the broadcasted array expression in the nth dimension.

View File

@ -17,73 +17,70 @@ synopsis
::
namespace boost
{
namespace numpy
{
namespace boost
{
namespace numpy
{
class ndarray : public python::object
{
class ndarray : public python::object
{
public:
enum bitflag
{
NONE=0x0, C_CONTIGUOUS=0x1, F_CONTIGUOUS=0x2, V_CONTIGUOUS=0x1|0x2,
ALIGNED=0x4, WRITEABLE=0x8, BEHAVED=0x4|0x8,
CARRAY_RO=0x1|0x4, CARRAY=0x1|0x4|0x8, CARRAY_MIS=0x1|0x8,
FARRAY_RO=0x2|0x4, FARRAY=0x2|0x4|0x8, FARRAY_MIS=0x2|0x8,
UPDATE_ALL=0x1|0x2|0x4, VARRAY=0x1|0x2|0x8, ALL=0x1|0x2|0x4|0x8
};
public:
enum bitflag
{
NONE=0x0, C_CONTIGUOUS=0x1, F_CONTIGUOUS=0x2, V_CONTIGUOUS=0x1|0x2,
ALIGNED=0x4, WRITEABLE=0x8, BEHAVED=0x4|0x8,
CARRAY_RO=0x1|0x4, CARRAY=0x1|0x4|0x8, CARRAY_MIS=0x1|0x8,
FARRAY_RO=0x2|0x4, FARRAY=0x2|0x4|0x8, FARRAY_MIS=0x2|0x8,
UPDATE_ALL=0x1|0x2|0x4, VARRAY=0x1|0x2|0x8, ALL=0x1|0x2|0x4|0x8
};
ndarray view(dtype const & dt) const;
ndarray copy() const;
int const shape(int n) const;
int const strides(int n) const;
char * get_data() const;
dtype get_dtype() const;
python::object get_base() const;
void set_base(object const & base);
Py_intptr_t const * get_shape() const;
Py_intptr_t const * get_strides() const;
int const get_nd() const;
bitflag const get_flags() const;
ndarray transpose() const;
ndarray squeeze() const;
ndarray reshape(python::tuple const & shape) const;
python::object scalarize() const;
};
ndarray view(dtype const & dt) const;
ndarray copy() const;
int const shape(int n) const;
int const strides(int n) const;
char * get_data() const;
dtype get_dtype() const;
python::object get_base() const;
void set_base(object const & base);
Py_intptr_t const * get_shape() const;
Py_intptr_t const * get_strides() const;
int const get_nd() const;
bitflag const get_flags() const;
ndarray transpose() const;
ndarray squeeze() const;
ndarray reshape(python::tuple const & shape) const;
python::object scalarize() const;
};
ndarray zeros(python::tuple const & shape, dtype const & dt);
ndarray zeros(int nd, Py_intptr_t const * shape, dtype const & dt);
ndarray zeros(python::tuple const & shape, dtype const & dt);
ndarray zeros(int nd, Py_intptr_t const * shape, dtype const & dt);
ndarray empty(python::tuple const & shape, dtype const & dt);
ndarray empty(int nd, Py_intptr_t const * shape, dtype const & dt);
ndarray empty(python::tuple const & shape, dtype const & dt);
ndarray empty(int nd, Py_intptr_t const * shape, dtype const & dt);
ndarray array(python::object const & obj);
ndarray array(python::object const & obj, dtype const & dt);
ndarray array(python::object const & obj);
ndarray array(python::object const & obj, dtype const & dt);
template <typename Container>
ndarray from_data(void * data,dtype const & dt,Container shape,Container strides,python::object const & owner);
template <typename Container>
ndarray from_data(void const * data, dtype const & dt, Container shape, Container strides, python::object const & owner);
template <typename Container>
ndarray from_data(void * data,dtype const & dt,Container shape,Container strides,python::object const & owner);
template <typename Container>
ndarray from_data(void const * data, dtype const & dt, Container shape, Container strides, python::object const & owner);
ndarray from_object(python::object const & obj, dtype const & dt,int nd_min, int nd_max, ndarray::bitflag flags=ndarray::NONE);
ndarray from_object(python::object const & obj, dtype const & dt,int nd, ndarray::bitflag flags=ndarray::NONE);
ndarray from_object(python::object const & obj, dtype const & dt, ndarray::bitflag flags=ndarray::NONE);
ndarray from_object(python::object const & obj, int nd_min, int nd_max,ndarray::bitflag flags=ndarray::NONE);
ndarray from_object(python::object const & obj, int nd, ndarray::bitflag flags=ndarray::NONE);
ndarray from_object(python::object const & obj, ndarray::bitflag flags=ndarray::NONE)
ndarray from_object(python::object const & obj, dtype const & dt,int nd_min, int nd_max, ndarray::bitflag flags=ndarray::NONE);
ndarray from_object(python::object const & obj, dtype const & dt,int nd, ndarray::bitflag flags=ndarray::NONE);
ndarray from_object(python::object const & obj, dtype const & dt, ndarray::bitflag flags=ndarray::NONE);
ndarray from_object(python::object const & obj, int nd_min, int nd_max,ndarray::bitflag flags=ndarray::NONE);
ndarray from_object(python::object const & obj, int nd, ndarray::bitflag flags=ndarray::NONE);
ndarray from_object(python::object const & obj, ndarray::bitflag flags=ndarray::NONE)
ndarray::bitflag operator|(ndarray::bitflag a, ndarray::bitflag b) ;
ndarray::bitflag operator&(ndarray::bitflag a, ndarray::bitflag b);
ndarray::bitflag operator|(ndarray::bitflag a, ndarray::bitflag b) ;
ndarray::bitflag operator&(ndarray::bitflag a, ndarray::bitflag b);
}
}
constructors
@ -91,31 +88,31 @@ constructors
::
ndarray view(dtype const & dt) const;
ndarray view(dtype const & dt) const;
:Returns: new ndarray with old ndarray data cast as supplied dtype
::
ndarray copy() const;
ndarray copy() const;
:Returns: Copy of calling ndarray object
::
ndarray transpose() const;
ndarray transpose() const;
:Returns: An ndarray with the rows and columns interchanged
::
ndarray squeeze() const;
ndarray squeeze() const;
:Returns: An ndarray with all unit-shaped dimensions removed
::
ndarray reshape(python::tuple const & shape) const;
ndarray reshape(python::tuple const & shape) const;
:Requirements: The new ``shape`` of the ndarray must be supplied as a tuple
@ -124,16 +121,17 @@ constructors
::
python::object scalarize() const;
python::object scalarize() const;
:Returns: A scalar if the ndarray has only one element, otherwise it returns the entire array
::
ndarray zeros(python::tuple const & shape, dtype const & dt);
ndarray zeros(int nd, Py_intptr_t const * shape, dtype const & dt);
ndarray zeros(python::tuple const & shape, dtype const & dt);
ndarray zeros(int nd, Py_intptr_t const * shape, dtype const & dt);
:Requirements: The following parameters must be supplied as required :
* the ``shape`` or the size of all dimensions, as a tuple
* the ``dtype`` of the data
* the ``nd`` size for a square shaped ndarray
@ -143,11 +141,12 @@ constructors
::
ndarray empty(python::tuple const & shape, dtype const & dt);
ndarray empty(int nd, Py_intptr_t const * shape, dtype const & dt);
ndarray empty(python::tuple const & shape, dtype const & dt);
ndarray empty(int nd, Py_intptr_t const * shape, dtype const & dt);
:Requirements: The following parameters must be supplied :
* the ``shape`` or the size of all dimensions, as a tuple
* the ``dtype`` of the data
* the ``shape`` Py_intptr_t
@ -156,17 +155,18 @@ constructors
::
ndarray array(python::object const & obj);
ndarray array(python::object const & obj, dtype const & dt);
ndarray array(python::object const & obj);
ndarray array(python::object const & obj, dtype const & dt);
:Returns: A new ndarray from an arbitrary Python sequence, with dtype of each element specified optionally
::
template <typename Container>
inline ndarray from_data(void * data,dtype const & dt,Container shape,Container strides,python::object const & owner)
template <typename Container>
inline ndarray from_data(void * data,dtype const & dt,Container shape,Container strides,python::object const & owner)
:Requirements: The following parameters must be supplied :
* the ``data`` which is a generic C++ data container
* the dtype ``dt`` of the data
* the ``shape`` of the ndarray as Python object
@ -179,9 +179,10 @@ constructors
::
ndarray from_object(python::object const & obj, dtype const & dt,int nd_min, int nd_max, ndarray::bitflag flags=ndarray::NONE);
ndarray from_object(python::object const & obj, dtype const & dt,int nd_min, int nd_max, ndarray::bitflag flags=ndarray::NONE);
:Requirements: The following parameters must be supplied :
* the ``obj`` Python object to convert to ndarray
* the dtype ``dt`` of the data
* minimum number of dimensions ``nd_min`` of the ndarray as Python object
@ -192,9 +193,10 @@ constructors
::
inline ndarray from_object(python::object const & obj, dtype const & dt, int nd, ndarray::bitflag flags=ndarray::NONE);
inline ndarray from_object(python::object const & obj, dtype const & dt, int nd, ndarray::bitflag flags=ndarray::NONE);
:Requirements: The following parameters must be supplied :
* the ``obj`` Python object to convert to ndarray
* the dtype ``dt`` of the data
* number of dimensions ``nd`` of the ndarray as Python object
@ -204,9 +206,10 @@ constructors
::
inline ndarray from_object(python::object const & obj, dtype const & dt, ndarray::bitflag flags=ndarray::NONE)
inline ndarray from_object(python::object const & obj, dtype const & dt, ndarray::bitflag flags=ndarray::NONE)
:Requirements: The following parameters must be supplied :
* the ``obj`` Python object to convert to ndarray
* the dtype ``dt`` of the data
* optional ``flags`` bitflags
@ -215,9 +218,10 @@ constructors
::
ndarray from_object(python::object const & obj, int nd_min, int nd_max, ndarray::bitflag flags=ndarray::NONE);
ndarray from_object(python::object const & obj, int nd_min, int nd_max, ndarray::bitflag flags=ndarray::NONE);
:Requirements: The following parameters must be supplied :
* the ``obj`` Python object to convert to ndarray
* minimum number of dimensions ``nd_min`` of the ndarray as Python object
* maximum number of dimensions ``nd_max`` of the ndarray as Python object
@ -229,9 +233,10 @@ constructors
::
inline ndarray from_object(python::object const & obj, int nd, ndarray::bitflag flags=ndarray::NONE);
inline ndarray from_object(python::object const & obj, int nd, ndarray::bitflag flags=ndarray::NONE);
:Requirements: The following parameters must be supplied :
* the ``obj`` Python object to convert to ndarray
* the dtype ``dt`` of the data
* number of dimensions ``nd`` of the ndarray as Python object
@ -241,9 +246,10 @@ constructors
::
inline ndarray from_object(python::object const & obj, ndarray::bitflag flags=ndarray::NONE)
inline ndarray from_object(python::object const & obj, ndarray::bitflag flags=ndarray::NONE)
:Requirements: The following parameters must be supplied :
* the ``obj`` Python object to convert to ndarray
* optional ``flags`` bitflags
@ -255,19 +261,19 @@ accessors
::
int const shape(int n) const;
int const shape(int n) const;
:Returns: The size of the n-th dimension of the ndarray
::
int const strides(int n) const;
int const strides(int n) const;
:Returns: The stride of the nth dimension.
::
char * get_data() const;
char * get_data() const;
:Returns: Array's raw data pointer as a char
@ -275,61 +281,61 @@ accessors
::
dtype get_dtype() const;
dtype get_dtype() const;
:Returns: Array's data-type descriptor object (dtype)
::
python::object get_base() const;
python::object get_base() const;
:Returns: Object that owns the array's data, or None if the array owns its own data.
::
void set_base(object const & base);
void set_base(object const & base);
:Returns: Set the object that owns the array's data. Exercise caution while using this
::
Py_intptr_t const * get_shape() const;
Py_intptr_t const * get_shape() const;
:Returns: Shape of the array as an array of integers
::
Py_intptr_t const * get_strides() const;
Py_intptr_t const * get_strides() const;
:Returns: Stride of the array as an array of integers
::
int const get_nd() const;
int const get_nd() const;
:Returns: Number of array dimensions
::
bitflag const get_flags() const;
bitflag const get_flags() const;
:Returns: Array flags
::
inline ndarray::bitflag operator|(ndarray::bitflag a, ndarray::bitflag b)
inline ndarray::bitflag operator|(ndarray::bitflag a, ndarray::bitflag b)
:Returns: bitflag logically OR-ed as (a | b)
::
inline ndarray::bitflag operator&(ndarray::bitflag a, ndarray::bitflag b)
inline ndarray::bitflag operator&(ndarray::bitflag a, ndarray::bitflag b)
:Returns: bitflag logically AND-ed as (a & b)
@ -339,26 +345,26 @@ Example(s)
::
p::object tu = p::make_tuple('a','b','c') ;
np::ndarray example_tuple = np::array (tu) ;
p::object tu = p::make_tuple('a','b','c') ;
np::ndarray example_tuple = np::array (tu) ;
p::list l ;
np::ndarray example_list = np::array (l) ;
p::list l ;
np::ndarray example_list = np::array (l) ;
np::dtype dt = np::dtype::get_builtin<int>();
np::ndarray example_list1 = np::array (l,dt);
np::dtype dt = np::dtype::get_builtin<int>();
np::ndarray example_list1 = np::array (l,dt);
int data[] = {1,2,3,4} ;
p::tuple shape = p::make_tuple(4) ;
p::tuple stride = p::make_tuple(4) ;
p::object own ;
np::ndarray data_ex = np::from_data(data,dt,shape,stride,own);
int data[] = {1,2,3,4} ;
p::tuple shape = p::make_tuple(4) ;
p::tuple stride = p::make_tuple(4) ;
p::object own ;
np::ndarray data_ex = np::from_data(data,dt,shape,stride,own);
uint8_t mul_data[][4] = {{1,2,3,4},{5,6,7,8},{1,3,5,7}};
shape = p::make_tuple(3,2) ;
stride = p::make_tuple(4,2) ;
np::dtype dt1 = np::dtype::get_builtin<uint8_t>();
uint8_t mul_data[][4] = {{1,2,3,4},{5,6,7,8},{1,3,5,7}};
shape = p::make_tuple(3,2) ;
stride = p::make_tuple(4,2) ;
np::dtype dt1 = np::dtype::get_builtin<uint8_t>();
np::ndarray mul_data_ex = np::from_data(mul_data,dt1, p::make_tuple(3,4),p::make_tuple(4,1),p::object());
mul_data_ex = np::from_data(mul_data,dt1, shape,stride,p::object());
np::ndarray mul_data_ex = np::from_data(mul_data,dt1, p::make_tuple(3,4),p::make_tuple(4,1),p::object());
mul_data_ex = np::from_data(mul_data,dt1, shape,stride,p::object());

View File

@ -13,22 +13,26 @@ synopsis
::
namespace boost
{
namespace numpy
{
namespace boost
{
namespace numpy
{
template <typename TUnaryFunctor, typename TArgument=typename TUnaryFunctor::argument_type, typename TResult=typename TUnaryFunctor::result_type>
struct unary_ufunc
{
template <typename TUnaryFunctor,
typename TArgument=typename TUnaryFunctor::argument_type,
typename TResult=typename TUnaryFunctor::result_type>
struct unary_ufunc
{
static python::object call(TUnaryFunctor & self, python::object const & input, python::object const & output) ;
static python::object call(TUnaryFunctor & self,
python::object const & input,
python::object const & output) ;
static python::object make();
static python::object make();
}
}
}
};
}
}
constructors
@ -36,11 +40,11 @@ constructors
::
struct example_unary_ufunc
{
typedef any_valid_type argument_type;
typedef any_valid_type result_type;
};
struct example_unary_ufunc
{
typedef any_valid_type argument_type;
typedef any_valid_type result_type;
};
:Requirements: The ``any_valid`` type must be defined using typedef as a valid C++ type in order to use the struct methods correctly
@ -51,8 +55,12 @@ accessors
::
template <typename TUnaryFunctor, typename TArgument=typename TUnaryFunctor::argument_type,typename TResult=typename TUnaryFunctor::result_type>
static python::object call(TUnaryFunctor & self, python::object const & input, python::object const & output) ;
template <typename TUnaryFunctor,
typename TArgument=typename TUnaryFunctor::argument_type,
typename TResult=typename TUnaryFunctor::result_type>
static python::object call(TUnaryFunctor & self,
python::object const & input,
python::object const & output);
:Requires: Typenames ``TUnaryFunctor`` and optionally ``TArgument`` for argument type and ``TResult`` for result type
@ -60,8 +68,10 @@ accessors
::
template <typename TUnaryFunctor, typename TArgument=typename TUnaryFunctor::argument_type,typename TResult=typename TUnaryFunctor::result_type>
static python::object make();
template <typename TUnaryFunctor,
typename TArgument=typename TUnaryFunctor::argument_type,
typename TResult=typename TUnaryFunctor::result_type>
static python::object make();
:Requires: Typenames ``TUnaryFunctor`` and optionally ``TArgument`` for argument type and ``TResult`` for result type
@ -74,14 +84,14 @@ Example(s)
::
struct UnarySquare
{
typedef double argument_type;
typedef double result_type;
double operator()(double r) const { return r * r;}
};
struct UnarySquare
{
typedef double argument_type;
typedef double result_type;
double operator()(double r) const { return r * r;}
};
p::object ud = p::class_<UnarySquare, boost::shared_ptr<UnarySquare> >("UnarySquare").def("__call__", np::unary_ufunc<UnarySquare>::make());
p::object inst = ud();
std::cout << "Square of unary scalar 1.0 is " << p::extract <char const * > (p::str(inst.attr("__call__")(1.0))) << std::endl ;
p::object ud = p::class_<UnarySquare, boost::shared_ptr<UnarySquare> >("UnarySquare").def("__call__", np::unary_ufunc<UnarySquare>::make());
p::object inst = ud();
std::cout << "Square of unary scalar 1.0 is " << p::extract <char const * > (p::str(inst.attr("__call__")(1.0))) << std::endl ;