python/doc/numpy/reference/ndarray.rst
2016-10-10 14:22:57 -04:00

383 lines
10 KiB
ReStructuredText

ndarray
=======
.. contents :: Table of Contents
A `ndarray`_ is an N-dimensional array which contains items of the same type and size, where N is the number of dimensions and is specified in the form of a ``shape`` tuple. Optionally, the numpy ``dtype`` for the objects contained may also be specified.
.. _ndarray: http://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html
.. _dtype: http://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html#data-type-objects-dtype
``<boost/python/numpy/ndarray.hpp>`` contains the structures and methods necessary to move raw data between C++ and Python and create ndarrays from the data
synopsis
--------
::
namespace boost
{
namespace python
{
namespace numpy
{
class ndarray : public object
{
public:
enum bitflag
{
NONE=0x0, C_CONTIGUOUS=0x1, F_CONTIGUOUS=0x2, V_CONTIGUOUS=0x1|0x2,
ALIGNED=0x4, WRITEABLE=0x8, BEHAVED=0x4|0x8,
CARRAY_RO=0x1|0x4, CARRAY=0x1|0x4|0x8, CARRAY_MIS=0x1|0x8,
FARRAY_RO=0x2|0x4, FARRAY=0x2|0x4|0x8, FARRAY_MIS=0x2|0x8,
UPDATE_ALL=0x1|0x2|0x4, VARRAY=0x1|0x2|0x8, ALL=0x1|0x2|0x4|0x8
};
ndarray view(dtype const & dt) const;
ndarray astype(dtype const & dt) const;
ndarray copy() const;
int const shape(int n) const;
int const strides(int n) const;
char * get_data() const;
dtype get_dtype() const;
python::object get_base() const;
void set_base(object const & base);
Py_intptr_t const * get_shape() const;
Py_intptr_t const * get_strides() const;
int const get_nd() const;
bitflag const get_flags() const;
ndarray transpose() const;
ndarray squeeze() const;
ndarray reshape(tuple const & shape) const;
object scalarize() const;
};
ndarray zeros(tuple const & shape, dtype const & dt);
ndarray zeros(int nd, Py_intptr_t const * shape, dtype const & dt);
ndarray empty(tuple const & shape, dtype const & dt);
ndarray empty(int nd, Py_intptr_t const * shape, dtype const & dt);
ndarray array(object const & obj);
ndarray array(object const & obj, dtype const & dt);
template <typename Container>
ndarray from_data(void * data,dtype const & dt,Container shape,Container strides,python::object const & owner);
template <typename Container>
ndarray from_data(void const * data, dtype const & dt, Container shape, Container strides, object const & owner);
ndarray from_object(object const & obj, dtype const & dt,int nd_min, int nd_max, ndarray::bitflag flags=ndarray::NONE);
ndarray from_object(object const & obj, dtype const & dt,int nd, ndarray::bitflag flags=ndarray::NONE);
ndarray from_object(object const & obj, dtype const & dt, ndarray::bitflag flags=ndarray::NONE);
ndarray from_object(object const & obj, int nd_min, int nd_max,ndarray::bitflag flags=ndarray::NONE);
ndarray from_object(object const & obj, int nd, ndarray::bitflag flags=ndarray::NONE);
ndarray from_object(object const & obj, ndarray::bitflag flags=ndarray::NONE)
ndarray::bitflag operator|(ndarray::bitflag a, ndarray::bitflag b) ;
ndarray::bitflag operator&(ndarray::bitflag a, ndarray::bitflag b);
}
constructors
------------
::
ndarray view(dtype const & dt) const;
:Returns: new ndarray with old ndarray data cast as supplied dtype
::
ndarray astype(dtype const & dt) const;
:Returns: new ndarray with old ndarray data converted to supplied dtype
::
ndarray copy() const;
:Returns: Copy of calling ndarray object
::
ndarray transpose() const;
:Returns: An ndarray with the rows and columns interchanged
::
ndarray squeeze() const;
:Returns: An ndarray with all unit-shaped dimensions removed
::
ndarray reshape(tuple const & shape) const;
:Requirements: The new ``shape`` of the ndarray must be supplied as a tuple
:Returns: An ndarray with the same data but reshaped to the ``shape`` supplied
::
object scalarize() const;
:Returns: A scalar if the ndarray has only one element, otherwise it returns the entire array
::
ndarray zeros(tuple const & shape, dtype const & dt);
ndarray zeros(int nd, Py_intptr_t const * shape, dtype const & dt);
:Requirements: The following parameters must be supplied as required :
* the ``shape`` or the size of all dimensions, as a tuple
* the ``dtype`` of the data
* the ``nd`` size for a square shaped ndarray
* the ``shape`` Py_intptr_t
:Returns: A new ndarray with the given shape and data type, with data initialized to zero.
::
ndarray empty(tuple const & shape, dtype const & dt);
ndarray empty(int nd, Py_intptr_t const * shape, dtype const & dt);
:Requirements: The following parameters must be supplied :
* the ``shape`` or the size of all dimensions, as a tuple
* the ``dtype`` of the data
* the ``shape`` Py_intptr_t
:Returns: A new ndarray with the given shape and data type, with data left uninitialized.
::
ndarray array(object const & obj);
ndarray array(object const & obj, dtype const & dt);
:Returns: A new ndarray from an arbitrary Python sequence, with dtype of each element specified optionally
::
template <typename Container>
inline ndarray from_data(void * data,dtype const & dt,Container shape,Container strides,python::object const & owner)
:Requirements: The following parameters must be supplied :
* the ``data`` which is a generic C++ data container
* the dtype ``dt`` of the data
* the ``shape`` of the ndarray as Python object
* the ``strides`` of each dimension of the array as a Python object
* the ``owner`` of the data, in case it is not the ndarray itself
:Returns: ndarray with attributes and data supplied
:Note: The ``Container`` typename must be one that is convertible to a std::vector or python object type
::
ndarray from_object(object const & obj, dtype const & dt,int nd_min, int nd_max, ndarray::bitflag flags=ndarray::NONE);
:Requirements: The following parameters must be supplied :
* the ``obj`` Python object to convert to ndarray
* the dtype ``dt`` of the data
* minimum number of dimensions ``nd_min`` of the ndarray as Python object
* maximum number of dimensions ``nd_max`` of the ndarray as Python object
* optional ``flags`` bitflags
:Returns: ndarray constructed with dimensions and data supplied as parameters
::
inline ndarray from_object(object const & obj, dtype const & dt, int nd, ndarray::bitflag flags=ndarray::NONE);
:Requirements: The following parameters must be supplied :
* the ``obj`` Python object to convert to ndarray
* the dtype ``dt`` of the data
* number of dimensions ``nd`` of the ndarray as Python object
* optional ``flags`` bitflags
:Returns: ndarray with dimensions ``nd`` x ``nd`` and suplied parameters
::
inline ndarray from_object(object const & obj, dtype const & dt, ndarray::bitflag flags=ndarray::NONE)
:Requirements: The following parameters must be supplied :
* the ``obj`` Python object to convert to ndarray
* the dtype ``dt`` of the data
* optional ``flags`` bitflags
:Returns: Supplied Python object as ndarray
::
ndarray from_object(object const & obj, int nd_min, int nd_max, ndarray::bitflag flags=ndarray::NONE);
:Requirements: The following parameters must be supplied :
* the ``obj`` Python object to convert to ndarray
* minimum number of dimensions ``nd_min`` of the ndarray as Python object
* maximum number of dimensions ``nd_max`` of the ndarray as Python object
* optional ``flags`` bitflags
:Returns: ndarray with supplied dimension limits and parameters
:Note: dtype need not be supplied here
::
inline ndarray from_object(object const & obj, int nd, ndarray::bitflag flags=ndarray::NONE);
:Requirements: The following parameters must be supplied :
* the ``obj`` Python object to convert to ndarray
* the dtype ``dt`` of the data
* number of dimensions ``nd`` of the ndarray as Python object
* optional ``flags`` bitflags
:Returns: ndarray of ``nd`` x ``nd`` dimensions constructed from the supplied object
::
inline ndarray from_object(object const & obj, ndarray::bitflag flags=ndarray::NONE)
:Requirements: The following parameters must be supplied :
* the ``obj`` Python object to convert to ndarray
* optional ``flags`` bitflags
:Returns: ndarray of same dimensions and dtype as supplied Python object
accessors
---------
::
int const shape(int n) const;
:Returns: The size of the n-th dimension of the ndarray
::
int const strides(int n) const;
:Returns: The stride of the nth dimension.
::
char * get_data() const;
:Returns: Array's raw data pointer as a char
:Note: This returns char so stride math works properly on it.User will have to reinterpret_cast it.
::
dtype get_dtype() const;
:Returns: Array's data-type descriptor object (dtype)
::
object get_base() const;
:Returns: Object that owns the array's data, or None if the array owns its own data.
::
void set_base(object const & base);
:Returns: Set the object that owns the array's data. Exercise caution while using this
::
Py_intptr_t const * get_shape() const;
:Returns: Shape of the array as an array of integers
::
Py_intptr_t const * get_strides() const;
:Returns: Stride of the array as an array of integers
::
int const get_nd() const;
:Returns: Number of array dimensions
::
bitflag const get_flags() const;
:Returns: Array flags
::
inline ndarray::bitflag operator|(ndarray::bitflag a, ndarray::bitflag b)
:Returns: bitflag logically OR-ed as (a | b)
::
inline ndarray::bitflag operator&(ndarray::bitflag a, ndarray::bitflag b)
:Returns: bitflag logically AND-ed as (a & b)
Example(s)
----------
::
namespace p = boost::python;
namespace np = boost::python::numpy;
p::object tu = p::make_tuple('a','b','c') ;
np::ndarray example_tuple = np::array (tu) ;
p::list l ;
np::ndarray example_list = np::array (l) ;
np::dtype dt = np::dtype::get_builtin<int>();
np::ndarray example_list1 = np::array (l,dt);
int data[] = {1,2,3,4} ;
p::tuple shape = p::make_tuple(4) ;
p::tuple stride = p::make_tuple(4) ;
p::object own ;
np::ndarray data_ex = np::from_data(data,dt,shape,stride,own);
uint8_t mul_data[][4] = {{1,2,3,4},{5,6,7,8},{1,3,5,7}};
shape = p::make_tuple(3,2) ;
stride = p::make_tuple(4,2) ;
np::dtype dt1 = np::dtype::get_builtin<uint8_t>();
np::ndarray mul_data_ex = np::from_data(mul_data,dt1, p::make_tuple(3,4),p::make_tuple(4,1),p::object());
mul_data_ex = np::from_data(mul_data,dt1, shape,stride,p::object());