python/example/numpy/gaussian.cpp
2016-10-23 21:34:16 -04:00

316 lines
10 KiB
C++

// Copyright Jim Bosch 2010-2012.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <boost/python/numpy.hpp>
#include <cmath>
#include <memory>
#ifndef M_PI
#include <boost/math/constants/constants.hpp>
const double M_PI = boost::math::constants::pi<double>();
#endif
namespace bp = boost::python;
namespace bn = boost::python::numpy;
/**
* A 2x2 matrix class, purely for demonstration purposes.
*
* Instead of wrapping this class with Boost.Python, we'll convert it to/from numpy.ndarray.
*/
class matrix2 {
public:
double & operator()(int i, int j) {
return _data[i*2 + j];
}
double const & operator()(int i, int j) const {
return _data[i*2 + j];
}
double const * data() const { return _data; }
private:
double _data[4];
};
/**
* A 2-element vector class, purely for demonstration purposes.
*
* Instead of wrapping this class with Boost.Python, we'll convert it to/from numpy.ndarray.
*/
class vector2 {
public:
double & operator[](int i) {
return _data[i];
}
double const & operator[](int i) const {
return _data[i];
}
double const * data() const { return _data; }
vector2 operator+(vector2 const & other) const {
vector2 r;
r[0] = _data[0] + other[0];
r[1] = _data[1] + other[1];
return r;
}
vector2 operator-(vector2 const & other) const {
vector2 r;
r[0] = _data[0] - other[0];
r[1] = _data[1] - other[1];
return r;
}
private:
double _data[2];
};
/**
* Matrix-vector multiplication.
*/
vector2 operator*(matrix2 const & m, vector2 const & v) {
vector2 r;
r[0] = m(0, 0) * v[0] + m(0, 1) * v[1];
r[1] = m(1, 0) * v[0] + m(1, 1) * v[1];
return r;
}
/**
* Vector inner product.
*/
double dot(vector2 const & v1, vector2 const & v2) {
return v1[0] * v2[0] + v1[1] * v2[1];
}
/**
* This class represents a simple 2-d Gaussian (Normal) distribution, defined by a
* mean vector 'mu' and a covariance matrix 'sigma'.
*/
class bivariate_gaussian {
public:
vector2 const & get_mu() const { return _mu; }
matrix2 const & get_sigma() const { return _sigma; }
/**
* Evaluate the density of the distribution at a point defined by a two-element vector.
*/
double operator()(vector2 const & p) const {
vector2 u = _cholesky * (p - _mu);
return 0.5 * _cholesky(0, 0) * _cholesky(1, 1) * std::exp(-0.5 * dot(u, u)) / M_PI;
}
/**
* Evaluate the density of the distribution at an (x, y) point.
*/
double operator()(double x, double y) const {
vector2 p;
p[0] = x;
p[1] = y;
return operator()(p);
}
/**
* Construct from a mean vector and covariance matrix.
*/
bivariate_gaussian(vector2 const & mu, matrix2 const & sigma)
: _mu(mu), _sigma(sigma), _cholesky(compute_inverse_cholesky(sigma))
{}
private:
/**
* This evaluates the inverse of the Cholesky factorization of a 2x2 matrix;
* it's just a shortcut in evaluating the density.
*/
static matrix2 compute_inverse_cholesky(matrix2 const & m) {
matrix2 l;
// First do cholesky factorization: l l^t = m
l(0, 0) = std::sqrt(m(0, 0));
l(0, 1) = m(0, 1) / l(0, 0);
l(1, 1) = std::sqrt(m(1, 1) - l(0,1) * l(0,1));
// Now do forward-substitution (in-place) to invert:
l(0, 0) = 1.0 / l(0, 0);
l(1, 0) = l(0, 1) = -l(0, 1) / l(1, 1);
l(1, 1) = 1.0 / l(1, 1);
return l;
}
vector2 _mu;
matrix2 _sigma;
matrix2 _cholesky;
};
/*
* We have a two options for wrapping get_mu and get_sigma into NumPy-returning Python methods:
* - we could deep-copy the data, making totally new NumPy arrays;
* - we could make NumPy arrays that point into the existing memory.
* The latter is often preferable, especially if the arrays are large, but it's dangerous unless
* the reference counting is correct: the returned NumPy array needs to hold a reference that
* keeps the memory it points to from being deallocated as long as it is alive. This is what the
* "owner" argument to from_data does - the NumPy array holds a reference to the owner, keeping it
* from being destroyed.
*
* Note that this mechanism isn't completely safe for data members that can have their internal
* storage reallocated. A std::vector, for instance, can be invalidated when it is resized,
* so holding a Python reference to a C++ class that holds a std::vector may not be a guarantee
* that the memory in the std::vector will remain valid.
*/
/**
* These two functions are custom wrappers for get_mu and get_sigma, providing the shallow-copy
* conversion with reference counting described above.
*
* It's also worth noting that these return NumPy arrays that cannot be modified in Python;
* the const overloads of vector::data() and matrix::data() return const references,
* and passing a const pointer to from_data causes NumPy's 'writeable' flag to be set to false.
*/
static bn::ndarray py_get_mu(bp::object const & self) {
vector2 const & mu = bp::extract<bivariate_gaussian const &>(self)().get_mu();
return bn::from_data(
mu.data(),
bn::dtype::get_builtin<double>(),
bp::make_tuple(2),
bp::make_tuple(sizeof(double)),
self
);
}
static bn::ndarray py_get_sigma(bp::object const & self) {
matrix2 const & sigma = bp::extract<bivariate_gaussian const &>(self)().get_sigma();
return bn::from_data(
sigma.data(),
bn::dtype::get_builtin<double>(),
bp::make_tuple(2, 2),
bp::make_tuple(2 * sizeof(double), sizeof(double)),
self
);
}
/**
* To allow the constructor to work, we need to define some from-Python converters from NumPy arrays
* to the matrix/vector types. The rvalue-from-python functionality is not well-documented in Boost.Python
* itself; you can learn more from boost/python/converter/rvalue_from_python_data.hpp.
*/
/**
* We start with two functions that just copy a NumPy array into matrix/vector objects. These will be used
* in the templated converted below. The first just uses the operator[] overloads provided by
* bp::object.
*/
static void copy_ndarray_to_mv2(bn::ndarray const & array, vector2 & vec) {
vec[0] = bp::extract<double>(array[0]);
vec[1] = bp::extract<double>(array[1]);
}
/**
* Here, we'll take the alternate approach of using the strides to access the array's memory directly.
* This can be much faster for large arrays.
*/
static void copy_ndarray_to_mv2(bn::ndarray const & array, matrix2 & mat) {
// Unfortunately, get_strides() can't be inlined, so it's best to call it once up-front.
Py_intptr_t const * strides = array.get_strides();
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 2; ++j) {
mat(i, j) = *reinterpret_cast<double const *>(array.get_data() + i * strides[0] + j * strides[1]);
}
}
}
/**
* Here's the actual converter. Because we've separated the differences into the above functions,
* we can write a single template class that works for both matrix2 and vector2.
*/
template <typename T, int N>
struct mv2_from_python {
/**
* Register the converter.
*/
mv2_from_python() {
bp::converter::registry::push_back(
&convertible,
&construct,
bp::type_id< T >()
);
}
/**
* Test to see if we can convert this to the desired type; if not return zero.
* If we can convert, returned pointer can be used by construct().
*/
static void * convertible(PyObject * p) {
try {
bp::object obj(bp::handle<>(bp::borrowed(p)));
std::auto_ptr<bn::ndarray> array(
new bn::ndarray(
bn::from_object(obj, bn::dtype::get_builtin<double>(), N, N, bn::ndarray::V_CONTIGUOUS)
)
);
if (array->shape(0) != 2) return 0;
if (N == 2 && array->shape(1) != 2) return 0;
return array.release();
} catch (bp::error_already_set & err) {
bp::handle_exception();
return 0;
}
}
/**
* Finish the conversion by initializing the C++ object into memory prepared by Boost.Python.
*/
static void construct(PyObject * obj, bp::converter::rvalue_from_python_stage1_data * data) {
// Extract the array we passed out of the convertible() member function.
std::auto_ptr<bn::ndarray> array(reinterpret_cast<bn::ndarray*>(data->convertible));
// Find the memory block Boost.Python has prepared for the result.
typedef bp::converter::rvalue_from_python_storage<T> storage_t;
storage_t * storage = reinterpret_cast<storage_t*>(data);
// Use placement new to initialize the result.
T * m_or_v = new (storage->storage.bytes) T();
// Fill the result with the values from the NumPy array.
copy_ndarray_to_mv2(*array, *m_or_v);
// Finish up.
data->convertible = storage->storage.bytes;
}
};
BOOST_PYTHON_MODULE(gaussian) {
bn::initialize();
// Register the from-python converters
mv2_from_python< vector2, 1 >();
mv2_from_python< matrix2, 2 >();
typedef double (bivariate_gaussian::*call_vector)(vector2 const &) const;
bp::class_<bivariate_gaussian>("bivariate_gaussian", bp::init<bivariate_gaussian const &>())
// Declare the constructor (wouldn't work without the from-python converters).
.def(bp::init< vector2 const &, matrix2 const & >())
// Use our custom reference-counting getters
.add_property("mu", &py_get_mu)
.add_property("sigma", &py_get_sigma)
// First overload accepts a two-element array argument
.def("__call__", (call_vector)&bivariate_gaussian::operator())
// This overload works like a binary NumPy universal function: you can pass
// in scalars or arrays, and the C++ function will automatically be called
// on each element of an array argument.
.def("__call__", bn::binary_ufunc<bivariate_gaussian,double,double,double>::make())
;
}