python/example/numpy/wrap.cpp
2016-10-23 21:34:16 -04:00

136 lines
5.2 KiB
C++

// Copyright Jim Bosch 2011-2012.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
/**
* A simple example showing how to wrap a couple of C++ functions that
* operate on 2-d arrays into Python functions that take NumPy arrays
* as arguments.
*
* If you find have a lot of such functions to wrap, you may want to
* create a C++ array type (or use one of the many existing C++ array
* libraries) that maps well to NumPy arrays and create Boost.Python
* converters. There's more work up front than the approach here,
* but much less boilerplate per function. See the "Gaussian" example
* included with Boost.NumPy for an example of custom converters, or
* take a look at the "ndarray" project on GitHub for a more complete,
* high-level solution.
*
* Note that we're using embedded Python here only to make a convenient
* self-contained example; you could just as easily put the wrappers
* in a regular C++-compiled module and imported them in regular
* Python. Again, see the Gaussian demo for an example.
*/
#include <boost/python/numpy.hpp>
#include <boost/scoped_array.hpp>
#include <iostream>
namespace p = boost::python;
namespace np = boost::python::numpy;
// This is roughly the most efficient way to write a C/C++ function that operates
// on a 2-d NumPy array - operate directly on the array by incrementing a pointer
// with the strides.
void fill1(double * array, int rows, int cols, int row_stride, int col_stride) {
double * row_iter = array;
double n = 0.0; // just a counter we'll fill the array with.
for (int i = 0; i < rows; ++i, row_iter += row_stride) {
double * col_iter = row_iter;
for (int j = 0; j < cols; ++j, col_iter += col_stride) {
*col_iter = ++n;
}
}
}
// Here's a simple wrapper function for fill1. It requires that the passed
// NumPy array be exactly what we're looking for - no conversion from nested
// sequences or arrays with other data types, because we want to modify it
// in-place.
void wrap_fill1(np::ndarray const & array) {
if (array.get_dtype() != np::dtype::get_builtin<double>()) {
PyErr_SetString(PyExc_TypeError, "Incorrect array data type");
p::throw_error_already_set();
}
if (array.get_nd() != 2) {
PyErr_SetString(PyExc_TypeError, "Incorrect number of dimensions");
p::throw_error_already_set();
}
fill1(reinterpret_cast<double*>(array.get_data()),
array.shape(0), array.shape(1),
array.strides(0) / sizeof(double), array.strides(1) / sizeof(double));
}
// Another fill function that takes a double**. This is less efficient, because
// it's not the native NumPy data layout, but it's common enough in C/C++ that
// it's worth its own example. This time we don't pass the strides, and instead
// in wrap_fill2 we'll require the C_CONTIGUOUS bitflag, which guarantees that
// the column stride is 1 and the row stride is the number of columns. That
// restricts the arrays that can be passed to fill2 (it won't work on most
// subarray views or transposes, for instance).
void fill2(double ** array, int rows, int cols) {
double n = 0.0; // just a counter we'll fill the array with.
for (int i = 0; i < rows; ++i) {
for (int j = 0; j < cols; ++j) {
array[i][j] = ++n;
}
}
}
// Here's the wrapper for fill2; it's a little more complicated because we need
// to check the flags and create the array of pointers.
void wrap_fill2(np::ndarray const & array) {
if (array.get_dtype() != np::dtype::get_builtin<double>()) {
PyErr_SetString(PyExc_TypeError, "Incorrect array data type");
p::throw_error_already_set();
}
if (array.get_nd() != 2) {
PyErr_SetString(PyExc_TypeError, "Incorrect number of dimensions");
p::throw_error_already_set();
}
if (!(array.get_flags() & np::ndarray::C_CONTIGUOUS)) {
PyErr_SetString(PyExc_TypeError, "Array must be row-major contiguous");
p::throw_error_already_set();
}
double * iter = reinterpret_cast<double*>(array.get_data());
int rows = array.shape(0);
int cols = array.shape(1);
boost::scoped_array<double*> ptrs(new double*[rows]);
for (int i = 0; i < rows; ++i, iter += cols) {
ptrs[i] = iter;
}
fill2(ptrs.get(), array.shape(0), array.shape(1));
}
BOOST_PYTHON_MODULE(example) {
np::initialize(); // have to put this in any module that uses Boost.NumPy
p::def("fill1", wrap_fill1);
p::def("fill2", wrap_fill2);
}
int main(int argc, char **argv)
{
// This line makes our module available to the embedded Python intepreter.
# if PY_VERSION_HEX >= 0x03000000
PyImport_AppendInittab("example", &PyInit_example);
# else
PyImport_AppendInittab("example", &initexample);
# endif
// Initialize the Python runtime.
Py_Initialize();
PyRun_SimpleString(
"import example\n"
"import numpy\n"
"z1 = numpy.zeros((5,6), dtype=float)\n"
"z2 = numpy.zeros((4,3), dtype=float)\n"
"example.fill1(z1)\n"
"example.fill2(z2)\n"
"print z1\n"
"print z2\n"
);
Py_Finalize();
}