136 lines
5.2 KiB
C++
136 lines
5.2 KiB
C++
// Copyright Jim Bosch 2011-2012.
|
|
// Distributed under the Boost Software License, Version 1.0.
|
|
// (See accompanying file LICENSE_1_0.txt or copy at
|
|
// http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
/**
|
|
* A simple example showing how to wrap a couple of C++ functions that
|
|
* operate on 2-d arrays into Python functions that take NumPy arrays
|
|
* as arguments.
|
|
*
|
|
* If you find have a lot of such functions to wrap, you may want to
|
|
* create a C++ array type (or use one of the many existing C++ array
|
|
* libraries) that maps well to NumPy arrays and create Boost.Python
|
|
* converters. There's more work up front than the approach here,
|
|
* but much less boilerplate per function. See the "Gaussian" example
|
|
* included with Boost.NumPy for an example of custom converters, or
|
|
* take a look at the "ndarray" project on GitHub for a more complete,
|
|
* high-level solution.
|
|
*
|
|
* Note that we're using embedded Python here only to make a convenient
|
|
* self-contained example; you could just as easily put the wrappers
|
|
* in a regular C++-compiled module and imported them in regular
|
|
* Python. Again, see the Gaussian demo for an example.
|
|
*/
|
|
|
|
#include <boost/python/numpy.hpp>
|
|
#include <boost/scoped_array.hpp>
|
|
#include <iostream>
|
|
|
|
namespace p = boost::python;
|
|
namespace np = boost::python::numpy;
|
|
|
|
// This is roughly the most efficient way to write a C/C++ function that operates
|
|
// on a 2-d NumPy array - operate directly on the array by incrementing a pointer
|
|
// with the strides.
|
|
void fill1(double * array, int rows, int cols, int row_stride, int col_stride) {
|
|
double * row_iter = array;
|
|
double n = 0.0; // just a counter we'll fill the array with.
|
|
for (int i = 0; i < rows; ++i, row_iter += row_stride) {
|
|
double * col_iter = row_iter;
|
|
for (int j = 0; j < cols; ++j, col_iter += col_stride) {
|
|
*col_iter = ++n;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Here's a simple wrapper function for fill1. It requires that the passed
|
|
// NumPy array be exactly what we're looking for - no conversion from nested
|
|
// sequences or arrays with other data types, because we want to modify it
|
|
// in-place.
|
|
void wrap_fill1(np::ndarray const & array) {
|
|
if (array.get_dtype() != np::dtype::get_builtin<double>()) {
|
|
PyErr_SetString(PyExc_TypeError, "Incorrect array data type");
|
|
p::throw_error_already_set();
|
|
}
|
|
if (array.get_nd() != 2) {
|
|
PyErr_SetString(PyExc_TypeError, "Incorrect number of dimensions");
|
|
p::throw_error_already_set();
|
|
}
|
|
fill1(reinterpret_cast<double*>(array.get_data()),
|
|
array.shape(0), array.shape(1),
|
|
array.strides(0) / sizeof(double), array.strides(1) / sizeof(double));
|
|
}
|
|
|
|
// Another fill function that takes a double**. This is less efficient, because
|
|
// it's not the native NumPy data layout, but it's common enough in C/C++ that
|
|
// it's worth its own example. This time we don't pass the strides, and instead
|
|
// in wrap_fill2 we'll require the C_CONTIGUOUS bitflag, which guarantees that
|
|
// the column stride is 1 and the row stride is the number of columns. That
|
|
// restricts the arrays that can be passed to fill2 (it won't work on most
|
|
// subarray views or transposes, for instance).
|
|
void fill2(double ** array, int rows, int cols) {
|
|
double n = 0.0; // just a counter we'll fill the array with.
|
|
for (int i = 0; i < rows; ++i) {
|
|
for (int j = 0; j < cols; ++j) {
|
|
array[i][j] = ++n;
|
|
}
|
|
}
|
|
}
|
|
// Here's the wrapper for fill2; it's a little more complicated because we need
|
|
// to check the flags and create the array of pointers.
|
|
void wrap_fill2(np::ndarray const & array) {
|
|
if (array.get_dtype() != np::dtype::get_builtin<double>()) {
|
|
PyErr_SetString(PyExc_TypeError, "Incorrect array data type");
|
|
p::throw_error_already_set();
|
|
}
|
|
if (array.get_nd() != 2) {
|
|
PyErr_SetString(PyExc_TypeError, "Incorrect number of dimensions");
|
|
p::throw_error_already_set();
|
|
}
|
|
if (!(array.get_flags() & np::ndarray::C_CONTIGUOUS)) {
|
|
PyErr_SetString(PyExc_TypeError, "Array must be row-major contiguous");
|
|
p::throw_error_already_set();
|
|
}
|
|
double * iter = reinterpret_cast<double*>(array.get_data());
|
|
int rows = array.shape(0);
|
|
int cols = array.shape(1);
|
|
boost::scoped_array<double*> ptrs(new double*[rows]);
|
|
for (int i = 0; i < rows; ++i, iter += cols) {
|
|
ptrs[i] = iter;
|
|
}
|
|
fill2(ptrs.get(), array.shape(0), array.shape(1));
|
|
}
|
|
|
|
BOOST_PYTHON_MODULE(example) {
|
|
np::initialize(); // have to put this in any module that uses Boost.NumPy
|
|
p::def("fill1", wrap_fill1);
|
|
p::def("fill2", wrap_fill2);
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
// This line makes our module available to the embedded Python intepreter.
|
|
# if PY_VERSION_HEX >= 0x03000000
|
|
PyImport_AppendInittab("example", &PyInit_example);
|
|
# else
|
|
PyImport_AppendInittab("example", &initexample);
|
|
# endif
|
|
// Initialize the Python runtime.
|
|
Py_Initialize();
|
|
|
|
PyRun_SimpleString(
|
|
"import example\n"
|
|
"import numpy\n"
|
|
"z1 = numpy.zeros((5,6), dtype=float)\n"
|
|
"z2 = numpy.zeros((4,3), dtype=float)\n"
|
|
"example.fill1(z1)\n"
|
|
"example.fill2(z2)\n"
|
|
"print z1\n"
|
|
"print z2\n"
|
|
);
|
|
Py_Finalize();
|
|
}
|
|
|
|
|