751ead66a4
[SVN r68168]
166 lines
5.3 KiB
C++
166 lines
5.3 KiB
C++
/* boost histogram.cpp graphical verification of distribution functions
|
|
*
|
|
* Copyright Jens Maurer 2000
|
|
* Distributed under the Boost Software License, Version 1.0. (See
|
|
* accompanying file LICENSE_1_0.txt or copy at
|
|
* http://www.boost.org/LICENSE_1_0.txt)
|
|
*
|
|
* $Id$
|
|
*
|
|
* This test program allows to visibly examine the results of the
|
|
* distribution functions.
|
|
*/
|
|
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
#include <vector>
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <string>
|
|
#include <boost/random.hpp>
|
|
|
|
|
|
void plot_histogram(const std::vector<int>& slots, int samples,
|
|
double from, double to)
|
|
{
|
|
int m = *std::max_element(slots.begin(), slots.end());
|
|
const int nRows = 20;
|
|
std::cout.setf(std::ios::fixed|std::ios::left);
|
|
std::cout.precision(5);
|
|
for(int r = 0; r < nRows; r++) {
|
|
double y = ((nRows - r) * double(m))/(nRows * samples);
|
|
std::cout << std::setw(10) << y << " ";
|
|
for(unsigned int col = 0; col < slots.size(); col++) {
|
|
char out = ' ';
|
|
if(slots[col]/double(samples) >= y)
|
|
out = 'x';
|
|
std::cout << out;
|
|
}
|
|
std::cout << std::endl;
|
|
}
|
|
std::cout << std::setw(12) << " "
|
|
<< std::setw(10) << from;
|
|
std::cout.setf(std::ios::right, std::ios::adjustfield);
|
|
std::cout << std::setw(slots.size()-10) << to << std::endl;
|
|
}
|
|
|
|
// I am not sure whether these two should be in the library as well
|
|
|
|
// maintain sum of NumberGenerator results
|
|
template<class NumberGenerator,
|
|
class Sum = typename NumberGenerator::result_type>
|
|
class sum_result
|
|
{
|
|
public:
|
|
typedef NumberGenerator base_type;
|
|
typedef typename base_type::result_type result_type;
|
|
explicit sum_result(const base_type & g) : gen(g), _sum(0) { }
|
|
result_type operator()() { result_type r = gen(); _sum += r; return r; }
|
|
base_type & base() { return gen; }
|
|
Sum sum() const { return _sum; }
|
|
void reset() { _sum = 0; }
|
|
private:
|
|
base_type gen;
|
|
Sum _sum;
|
|
};
|
|
|
|
|
|
// maintain square sum of NumberGenerator results
|
|
template<class NumberGenerator,
|
|
class Sum = typename NumberGenerator::result_type>
|
|
class squaresum_result
|
|
{
|
|
public:
|
|
typedef NumberGenerator base_type;
|
|
typedef typename base_type::result_type result_type;
|
|
explicit squaresum_result(const base_type & g) : gen(g), _sum(0) { }
|
|
result_type operator()() { result_type r = gen(); _sum += r*r; return r; }
|
|
base_type & base() { return gen; }
|
|
Sum squaresum() const { return _sum; }
|
|
void reset() { _sum = 0; }
|
|
private:
|
|
base_type gen;
|
|
Sum _sum;
|
|
};
|
|
|
|
|
|
template<class RNG>
|
|
void histogram(RNG base, int samples, double from, double to,
|
|
const std::string & name)
|
|
{
|
|
typedef squaresum_result<sum_result<RNG, double>, double > SRNG;
|
|
SRNG gen((sum_result<RNG, double>(base)));
|
|
const int nSlots = 60;
|
|
std::vector<int> slots(nSlots,0);
|
|
for(int i = 0; i < samples; i++) {
|
|
double val = gen();
|
|
if(val < from || val >= to) // early check avoids overflow
|
|
continue;
|
|
int slot = int((val-from)/(to-from) * nSlots);
|
|
if(slot < 0 || slot > (int)slots.size())
|
|
continue;
|
|
slots[slot]++;
|
|
}
|
|
std::cout << name << std::endl;
|
|
plot_histogram(slots, samples, from, to);
|
|
double mean = gen.base().sum() / samples;
|
|
std::cout << "mean: " << mean
|
|
<< " sigma: " << std::sqrt(gen.squaresum()/samples-mean*mean)
|
|
<< "\n" << std::endl;
|
|
}
|
|
|
|
template<class PRNG, class Dist>
|
|
inline boost::variate_generator<PRNG&, Dist> make_gen(PRNG & rng, Dist d)
|
|
{
|
|
return boost::variate_generator<PRNG&, Dist>(rng, d);
|
|
}
|
|
|
|
template<class PRNG>
|
|
void histograms()
|
|
{
|
|
PRNG rng;
|
|
using namespace boost;
|
|
histogram(make_gen(rng, uniform_smallint<>(0, 5)), 100000, -1, 6,
|
|
"uniform_smallint(0,5)");
|
|
histogram(make_gen(rng, uniform_int<>(0, 5)), 100000, -1, 6,
|
|
"uniform_int(0,5)");
|
|
histogram(make_gen(rng, uniform_real<>(0,1)), 100000, -0.5, 1.5,
|
|
"uniform_real(0,1)");
|
|
histogram(make_gen(rng, bernoulli_distribution<>(0.2)), 100000, -0.5, 1.5,
|
|
"bernoulli(0.2)");
|
|
histogram(make_gen(rng, binomial_distribution<>(4, 0.2)), 100000, -1, 5,
|
|
"binomial(4, 0.2)");
|
|
histogram(make_gen(rng, triangle_distribution<>(1, 2, 8)), 100000, 0, 10,
|
|
"triangle(1,2,8)");
|
|
histogram(make_gen(rng, geometric_distribution<>(5.0/6.0)), 100000, 0, 10,
|
|
"geometric(5/6)");
|
|
histogram(make_gen(rng, exponential_distribution<>(0.3)), 100000, 0, 10,
|
|
"exponential(0.3)");
|
|
histogram(make_gen(rng, cauchy_distribution<>()), 100000, -5, 5,
|
|
"cauchy");
|
|
histogram(make_gen(rng, lognormal_distribution<>(3, 2)), 100000, 0, 10,
|
|
"lognormal");
|
|
histogram(make_gen(rng, normal_distribution<>()), 100000, -3, 3,
|
|
"normal");
|
|
histogram(make_gen(rng, normal_distribution<>(0.5, 0.5)), 100000, -3, 3,
|
|
"normal(0.5, 0.5)");
|
|
histogram(make_gen(rng, poisson_distribution<>(1.5)), 100000, 0, 5,
|
|
"poisson(1.5)");
|
|
histogram(make_gen(rng, poisson_distribution<>(10)), 100000, 0, 20,
|
|
"poisson(10)");
|
|
histogram(make_gen(rng, gamma_distribution<>(0.5)), 100000, 0, 0.5,
|
|
"gamma(0.5)");
|
|
histogram(make_gen(rng, gamma_distribution<>(1)), 100000, 0, 3,
|
|
"gamma(1)");
|
|
histogram(make_gen(rng, gamma_distribution<>(2)), 100000, 0, 6,
|
|
"gamma(2)");
|
|
}
|
|
|
|
|
|
int main()
|
|
{
|
|
histograms<boost::mt19937>();
|
|
// histograms<boost::lagged_fibonacci607>();
|
|
}
|
|
|